Classes 11. Wolfram Alpha program: Visualization and Manipulation. Programming elements.

http://reference.wolfram.com/language/ref/Manipulate.html

Exercise 1. Introduce in the WolframAlpha: manipulate x in $x^2 + y^2$ (Fig. 1):

manipulate x in x^:	2 + y^2			☆ 😑
🔤 🚺 🖽 👼		🔛 Web Apps	≡ Examples	⊐⊄ Random
Input interpretation:	. 2 2			
manipulate	$\begin{array}{c} \text{plot} & x^{*} + y^{*} \\ x = 0 \text{ to } 2 \end{array}$			
		Wolfram	Language definition	Open code 🚗 n of Manipulate »
Result:				
x	o	0		
	2.5			
-1.0	-0.5	0.5 1.0		

Explain this example, namely:

- What does the variable x mean?
- Which range does x belong to?
- Visualization of which curve is shown in Figure 1?

Exercise 2. Enter in WolframAlpha: manipulate nx + y ^ 2:

- Draw a graph;
- Explain this example (what do the symbols n, x mean)?

Which interval is for x, y?

Visualization of which surface is drawn?

Exercise 3. Click on the area (Fig. 1) "Wolfram Language definition of Manipulate".

Consider the following examples:

- 1) Basic examples;
- 2) Applications;
- 3) Neat Examples.

Programming elements

Strings

String is the head of a character string "text".

Strings can contain any sequence of ordinary or special characters.

Mathematica offers many functions that operate on strings. We will discuss some of them.

StringJoin[$s_1, s_2,...$] or StringJoin[$\{s_1, s_2,...\}$] or $s_1 <> s_2 <> ...$ yields a string consisting of a concatenation of the s_i .

StringLength["string"] gives the number of characters in a string.

StringPosition["string", "sub"] gives a list of the starting and ending character positions at which "sub" appears as a substring of "string".

StringPosition["string", patt] gives all positions at which substrings matching the general string expression patt appear in "string".

StringPosition["string", patt, n] includes only the first n occurrences of patt.

StringPosition[$\{s_1, s_2, ...\}$, p] gives the list of results for each of the s_i .

StringTake["string", n] gives a string containing the first n characters in "string".

StringTake["string", -n] gives the last n characters in "string".

StringTake["string", {n}] gives the nth character in "string".

StringTake["string", {m, n}] gives characters m through n in "string".

Sort[$\{s_1, s_2, ...\}$] sorts the elements $s_1, s_2, ...$

ToUpperCase[string] yields a string in which all letters have been converted to uppercase.

ToLowerCase[string] yields a string in which all letters have been converted to lowercase.

ToString[expr] gives a string corresponding to the printed form of expr in OutputForm.

ToExpression[input] gives the expression obtained by interpreting strings or boxes as Wolfram Language input.

Example.

WolframAlpha computational knowledge engine.

l="abcde"<>"fghi"			\$
🔤 🔟 🛱 👼	🔛 Web Apps	≡ Examples	⊐⊄ Random
Assuming $\ensuremath{\mathbb{T}}^*$ is a variable Use as a unit instead			
Input: l = abcde <> fghi			Open code (A)
Result: l = abcdefghi			

Exercise 4. We have a string "abbaabbaa".

What transformation needs to be done to get a string "XbaXbaa"?

Exercise 5. Find the domain of functions:

a)
$$f(x) = x/(x-1);$$

b)
$$f(y) = tg y;$$

c)
$$f(z) = (1-z)^{\wedge}(\frac{1}{2}).$$

Exercise 6. Find the range of functions:

a)
$$f(x) = e^{(-\frac{1}{4}x)};$$

b)
$$f(x) = (\sin x)^2;$$

c)
$$f(y) = y/(y^2 + 1)$$
.

Special functions

Exercise 7. Calculate the derivative of Airy's function and draw its graph. Find the value of the function at the point x = 1.

Exercise 8. Calculate the integral of the BesselJ function (n = 3) and draw its graph. Find the value of the BesselJ function (n = 3) at the point x = 2.