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Preliminaries

The teaching script is created from lectures of the course of Linear algebra, which

author have on KUL for Computer Science students. The course consists of only 15 hours

of lectures, which means that there is not time for many interesting topics. There are

presented complex numbers, matrices and determinants, systems of linear equations and

polynomials. Discussed notions are given in understanding form and often illustrated by

examples. Author hopes that the teaching script will be helpfull for student.
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1. Complex numbers

Consider the set

R2 = R× R = {(x, y) : x, y ∈ R}.

Let z1 = (x1, y1), z2 = (x2, y2) ∈ R2. We define the equality of z1, z2 as follows

(x1, y1) = (x2, y2)⇔
df
x1 = x2 and y1 = y2

and the addition and multiplication operations on R2 in the following way

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and

z1 · z2 = (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

Then z1 + z2 is the sum of z1, z2, and z1 · z2 is the product of z1, z2.

Example. Let z1 = (−5, 6) and z2 = (1,−2). Then

z1 + z2 = (−5, 6) + (1,−2) = (−4, 4)

and

z1 · z2 = (−5, 6) · (1,−2) = (7, 16).

Definition. The set R2 together with the addition and multiplication operations, is called

the set of complex numbers, denoted by C. Any element z = (x, y) ∈ C is called a complex

number.

Theorem. (Properties of addition) Let z, z1, z2, z3 ∈ C. Then

1) z1 + z2 = z2 + z1 (commutative law),

2) (z1 + z2) + z3 = z1 + (z2 + z3) (associative law),

3) z + 0 = 0 + z = z, where 0 = (0, 0) ∈ C (additive identity),

4)
∧

z=(x,y)∈C

∨
−z=(−x,−y)∈C

z + (−z) = (−z) + z = 0.

Proof. Points 1), 3) and 4) are easy to prove. We show the second point. Let z1 =

(x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈ C. We have

L = (z1 + z2) + z3 = ((x1, y1) + (x2, y2)) + (x3, y3)

= (x1 + x2, y1 + y2) + (x3, y3)

= ((x1 + x2) + x3, (y1 + y2) + y3)



4

and

R = z1 + (z2 + z3) = (x1, y1) + ((x2, y2) + (x3, y3))

= (x1, y1) + (x2 + x3, y2 + y3)

= (x1 + (x2 + x3), y1 + (y2 + y3)).

Since the addition of real numbers is associative, it follows L = R. �

Definition. Let z1 = (x1, y1), z2 = (x2, y2) ∈ C. The difference of numbers z1, z2 is

defined

z1 − z2 =
df
z1 + (−z2)

and

z1 − z2 = (x1, y1)− (x2, y2) =
df

(x1 − x2, y1 − y2).

Theorem. (Properties of multiplication) Let z, z1, z2, z3 ∈ C. Then

1) z1 · z2 = z2 · z1 (commutative law),

2) (z1 · z2) · z3 = z1 · (z2 · z3) (associative law),

3) z · 1 = 1 · z = z, where 1 = (1, 0) ∈ C (multipicative identity),

4)
∧

z=(x,y)∈C\{0}

∨
z−1∈C

z · z−1 = z−1 · z = 1.

Proof. Points 1) and 2) are easy to show. We prove points 3) and 4).

3) Let z = (x, y) ∈ C. We have

z · 1 = (x, y) · (1, 0) = (x · 1− y · 0, x · 0 + 1 · y) = (x, y) = z

and

1 · z = (1, 0) · (x, y) = (1 · x− 0 · y, 1 · y + x · 0) = (x, y) = z.

4) Let z−1 = (x′, y′) ∈ C. Since (x, y) 6= (0, 0), it follows x 6= 0 or y 6= 0. Hence x2+y2 6=
0. Thus z ·z−1 = 1 implies (x, y) ·(x′, y′) = (1, 0), that is, (x ·x′−y ·y′, x ·y′+x′ ·y) = (1, 0).

Hence we get {
x · x′ − y · y′ = 1,

x · y′ + x′ · y = 0.

Solving that system with respect to x′ and y′ we obtain

x′ =
x

x2 + y2
and y′ = − y

x2 + y2
.

Hence for z = (x, y) ∈ C\{0} we have

z−1 =
1

z
=

(
x

x2 + y2
,− y

x2 + y2

)
∈ C\{0}.
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By the commutative law we also have z−1 · z = 1. �

Definition. Let z1 = (x1, y1) ∈ C, z = (x, y) ∈ C\{0}. Then the following is the quotient

of numbers z1 and z:

z1

z
= z1 · z−1 = (x1, y1) ·

(
x

x2 + y2
,− y

x2 + y2

)
=

(
x1x+ y1y

x2 + y2
,
−x1y + xy1

x2 + y2

)
∈ C.

Definition. An integer power of a complex number z ∈ C\{0} is defined by

z0 = 1, z1 = z, z2 = z · z

zn = z · z · . . . · z︸ ︷︷ ︸
n times

for all n = 1, 2, . . .

and

zn =
(
z−1
)−n

for all n = −1,−2, . . .

When z = 0, we define 0n = 0 for all n = 1, 2, . . .

Theorem. Let z, z1, z2 ∈ C\{0} and m,n ∈ Z. Then

1) zm · zn = zm+n,

2) zm

zn
= zm−n,

3) (zm)n = xmn,

4) (z1 · z2)n = zn1 · zn2 ,

5)
(
z1
z2

)n
=

zn1
zn2

.

Proof. Easy. �

Yet we have the following property of operations of complex numbers.

Theorem. Let z1, z2, z3 ∈ C. Then the following distributive law holds:

z1 · (z2 + z3) = z1 · z2 + z1 · z3.

Proof. Easy. �

Now, consider the set R×{0} together with the addition and multiplication operations

defined on R2. The function

f : R→ R× {0}, f(x) = (x, 0)

is bijective (that is, it is one-to-one and onto) and moreover

(x, 0) + (y, 0) = (x+ y, 0)

and

(x, 0) · (y, 0) = (xy, 0).
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We see that the algebraic operations on R × {0} are similar to the operations on R.

Therefore we can identify the ordered pair (x, 0) with the number x for all x ∈ R. Hence

we can write

(x, 0) = x.

Define

i =
df

(0, 1).

Theorem. Any complex number z = (x, y) can be uniquely represented in the form

z = x+ yi,

where x, y ∈ R. Moreover, i2 = −1.

Proof. We have

z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) · (0, 1) = x+ yi = (x, 0) + (0, 1) · (y, 0) = x+ iy.

Moreover,

i2 = i · i = (0, 1) · (0, 1) = (−1, 0) = −1. �

The form z = x+ yi is called the algebraic form of a complex number z = (x, y). Then

x = Re(z) is the real part of z, and y = Im(z) is the imaginary part of z. The complex

number i is called the imaginary unit.

Theorem. Let z, z1, z2 ∈ C. Then

1) z1 = z2 ⇔ Re(z1) = Re(z2) ∧ Im(z1) = Im(z2),

2) z ∈ R ⇔ Im(z) = 0,

3) z ∈ C\R ⇔ Im(z) 6= 0.

Proof. Easy. �

Now we look at operations on complex numbers in the algebraic form.

1) Addition:

z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i.

So,

Re(z1 + z2) = Re(z1) + Re(z2)

and

Im(z1 + z2) = Im(z1) + Im(z2).
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2) Multiplication:

z1z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

So,

Re(z1 · z2) = Re(z1)Re(z2)− Im(z1)Im(z2)

and

Im(z1z2) = Re(z1)Im(z2) + Re(z2)Im(z1).

In particular,

λz = λ(x+ yi) = λx+ λyi

for λ ∈ R and z ∈ C.

Theorem. Let z, z1, z2 ∈ C and λ, λ1, λ2 ∈ R. Then

1) λ(z1 + z2) = λz1 + λz2,

2) λ1(λ2z) = (λ1λ2)z,

3) (λ1 + λ2)z = λ1z + λ2z.

Proof. Easy. �

Now, we define the notion of a conjugate of a complex number.

Definition. Let z = x+ yi ∈ C. The conjugate of z is a complex number:

z =
df
x− yi ∈ C.

Theorem. (Properties of conjugate) Let z, z1, z2 ∈ C. Then

1) z = z ⇔ z ∈ R,

2) z = z,

3) zz ≥ 0,

4) z1 + z2 = z1 + z2,

5) z1z2 = z1 · z2,

6) z−1 = z−1, z 6= 0,

7)
(
z1
z2

)
= z1

z2
, z2 6= 0,

8) Re(z) = z+z
2

and Im(z) = z−z
2i

.

Proof. Let z = x+ yi, z1 = x1 + y1i, z2 = x2 + y2i, where x, x1, x2, y, y1, y2 ∈ R. Then
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1) The following steps are equivalent:

z = z

x+ yi = x− yi

2yi = 0

y = 0

z = x ∈ R.

2) Since z = x+ yi, we get z = x− yi, and consequently

z = x− (−yi) = x+ yi = z.

3) It can be easily seen that

zz = (x+ yi)(x− yi) = x2 + y2 ≥ 0.

4) We have

z1 + z2 = (x1 + y1i) + (x2 + y2i)

= (x1 + x2)− (y1 + y2)i

= (x1 − y1i) + (x2 − y2i)

= z1 + z2.

5) Similarly,

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i

= (x1x2 − y1y2)− (x1y2 + x2y1)i

= (x1 − y1i)(x2 − y2i)

= z1 · z2.

6) Let z 6= 0. Because z · 1
z

= 1, we have
(
z · 1

z

)
= 1. Hence z ·

(
1
z

)
= 1, that is, z−1 = z−1.

7) Let z2 6= 0. Now, (
z1

z2

)
=

(
z1 ·

1

z2

)
= z1 ·

(
1

z2

)
= z1 ·

(
1

z2

)
=
z1

z2

.

8) We have

z + z = (x+ yi) + (x− yi) = 2x = 2Re(z)

and

z − z = (x+ yi)− (x− yi) = 2yi = 2iIm(z).
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Hence,

Re(z) =
z + z

2
and Im(z) =

z − z
2i

. �

Remark. The properties 4) and 5) can be easily extended to give

4’)

(
n∑
k=1

zk

)
=

n∑
k=1

zk,

5’)

(
n∏
k=1

zk

)
=

n∏
k=1

zk

for all zk ∈ C, k = 1, 2, . . . , n.

As a consequence of 5’) and 6) we have

5”) zn = zn

for any z ∈ C and n ∈ Z.

Remark. Let z = x+ yi, z1 = x1 + y1i, z2 = x2 + y2i ∈ C and z, z2 6= 0. Then

1

z
=

z

z · z
=

x− yi
x2 + y2

=
x

x2 + y2
− y

x2 + y2
i

and

z1

z2

=
z1 · z2

z2 · z2

=
(x1 + y1i)(x2 − y2i)

x2
2 + y2

2

=
x1x2 + y1y2

x2
2 + y2

2

+
−x1y2 + x2y1

x2
2 + y2

2

i.

Definition. Let z = x+ yi ∈ C. The modulus of z is a number:

|z| =
df

√
x2 + y2 ∈ R.

Theorem. (Properties of modulus) Let z, z1, z2 ∈ C. Then

1) −|z| ≤ Re(z) ≤ |z| and −|z| ≤ Im(z) ≤ |z|,
2) |z| ≥ 0 and |z| = 0 ⇔ z = 0,

3) |z| = | − z| = |z|,
4) z · z = |z|2,

5) |z1z2| = |z1||z2|,
6) |z1| − |z2| ≤ |z1 + z2| ≤ |z1|+ |z2|,
7) |z−1| = |z|−1 , z 6= 0,

8)
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| , z2 6= 0,

9) |z1| − |z2| ≤ |z1 − z2| ≤ |z1|+ |z2|.

Proof. Points 1)–4) are easy. We prove next properties.

5) Since

|z1z2|2 = (z1z2)(z1z2) = (z1z1)(z2z2) = |z1|2|z2|2,
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we get, by 2), |z1z2| = |z1||z2|.

6) Observe that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = |z1|2 + z1z2 + z1z2 + |z2|2.

Because z1z2 = z1 · z2 = z1z2, it follows that

z1z2 + z1z2 = z1z2 + z1z2 = 2Re(z1z2) ≤ 2|z1z2| = 2|z1||z2|.

Hence

|z1 + z2|2 ≤ (|z1|+ |z2|)2,

that is,

|z1 + z2| ≤ |z1|+ |z2|.

For inequality on the left-hand side note that

|z1| = |z1 + z2 + (−z2)| ≤ |z1 + z2|+ | − z2| = |z1 + z2|+ |z2|.

Hence

|z1| − |z2| ≤ |z1 + z2|.

7) We know that z · 1
z

= 1. So |z| ·
∣∣1
z

∣∣ = 1, that is,
∣∣1
z

∣∣ = 1
|z| . Hence∣∣z−1

∣∣ = |z|−1 .

8) We easily get ∣∣∣∣z1

z2

∣∣∣∣ =

∣∣∣∣z1
1

z2

∣∣∣∣ =
∣∣z1z

−1
2

∣∣ = |z1|
∣∣z−1

2

∣∣ = |z1| |z2|−1 =
|z1|
|z2|

.

9) We have

|z1| = |z1 − z2 + z2| ≤ |z1 − z2|+ |z2|.

So

|z1| − |z2| ≤ |z1 − z2|.

On the other hand

|z1 − z2| = |z1 + (−z2)| ≤ |z1|+ | − z2| = |z1|+ |z2|. �

Remarks.

1) It is not difficult to see that

|z1 + z2| = |z1|+ |z2| ⇔ Re(z1z2) = |z1||z2| ⇔ z1 = tz2 for some t ≥ 0.
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2) The properties 5) and 6) can be easily extended to give

5’)

∣∣∣∣ n∏
k=1

zk

∣∣∣∣ =
n∏
k=1

|zk|,

6’)

∣∣∣∣ n∑
k=1

zk

∣∣∣∣ ≤ n∑
k=1

|zk|,

for all zk ∈ C, k = 1, 2, . . . , n.

As a consequence of 5’) and 7) we have

5”) |zn| = |z|n

for any z ∈ C and n ∈ Z.

Next we give geometric interpretation of a complex number. We have defined a complex

number z = (x, y) = x + yi to be an ordered pair (x, y) ∈ R2. So it is natural to let a

complex number z = x+ yi correspond to a point (x, y) on the plane R2.

Consider a plane equipped with the coordinate system xoy.

Definition. The point (x, y) is called the geometric image of the complex number z =

x+ yi.

The x-axis is called the real axis and the y-axis is called the imaginary axis. The plane

whose points are identified with complex numbers is called the complex plane.

Thus we have:

-

6

•

Rez

Imz

,
,
,
,
,,
z = x+ yi

x

y
|z|

Definition. For a complex number z = x + yi we can write the following trigonometric

form:

z = r(cosϕ+ i sinϕ),

where r ≥ 0 and ϕ ∈ [0, 2π). Then ϕ is called the argument of z, denoted arg(z) and

r = |z|. For z 6= 0, the modulus and argument of z are uniquely determined.
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Consider z = r(cosϕ+ i sinϕ) and let ϕ′ = ϕ+ 2kπ for k ∈ Z. Then

z = r[cos(ϕ′ − 2kπ) + i sin(ϕ′ − 2kπ)] = r(cosϕ′ + i sinϕ′),

that is, any complex number z can be represented as z = r(cosϕ′ + i sinϕ′), where r ≥ 0

and ϕ′ ∈ R. The set

Arg(z) = {ϕ′ : ϕ′ = ϕ+ 2kπ, k ∈ Z}

is called the extended argument of the complex number z.

Thus we have:

-

6

•

Rez

Imz

,
,
,
,
,,
z = x+ yi

x

y

r

ϕ

and we see that

cosϕ =
x

r
and sinϕ =

y

r
.

Remark. Note that two complex numbers z1, z2 6= 0 represented as z1 = r1(cosϕ1 +

i sinϕ1) and z2 = r2(cosϕ2 + i sinϕ2) are equal if and only if r1 = r2 and ϕ1 − ϕ2 = 2kπ,

gdzie k ∈ Z.

Example. For z = −1− i we have

x = −1, y = −1 and r = |z| =
√

(−1)2 + (−1)2 =
√

2.

Then

cosϕ =
x

r
= − 1√

2
= −
√

2

2
and sinϕ =

y

r
= − 1√

2
= −
√

2

2
.

Hence ϕ = 5
4
π and finally the trigonometric form of z is

z = r(cosϕ+ i sinϕ) =
√

2

(
cos

5

4
π + i sin

5

4
π

)
.

Theorem. Let z1 = r1(cosϕ1 + i sinϕ1) and z2 = r2(cosϕ2 + i sinϕ2). Then
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z1z2 = r1r2 (cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))

Proof. Indeed,

z1z2 = r1r2(cosϕ1 + i sinϕ1)(cosϕ2 + i sinϕ2)

= r1r2(cosϕ1 cosϕ2 + i cosϕ1 sinϕ2 + i sinϕ1 cosϕ2 − sinϕ1 sinϕ2)

= r1r2((cosϕ1 cosϕ2 − sinϕ1 sinϕ2) + i(sinϕ1 cosϕ2 + sinϕ2 cosϕ1))

= r1r2((cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)). �

Remarks.

1) We find again that |z1z2| = |z1||z2|.

2) We have arg(z1z2) = arg(z1) + arg(z2)− 2kπ, where

k =

{
0 if arg(z1) + arg(z2) < 2π,

1 if arg(z1) + arg(z2) ≥ 2π.

3) Also we can write

Arg(z1z2) = {arg(z1) + arg(z2) + 2kπ : k ∈ Z}.

4) Formula from above Theorem can be extended to n ≥ 2 complex numbers. If zk =

rk(cosϕk + i sinϕk), where k = 1, 2, . . . , n, then

z1z2 · · · zn = r1r2 · · · rn(cos(ϕ1 + ϕ2 + . . .+ ϕn) + i sin(ϕ1 + ϕ2 + . . .+ ϕn)).

Theorem. (De Moivre) Let z = r(cosϕ+ i sinϕ) and n ∈ N. Then

zn = rn(cosnϕ+ i sinnϕ).

Proof. Apply formula from Remark 4) for z = z1 = z2 = . . . = zn to obtain

zn = r · r · . . . · r︸ ︷︷ ︸
n times

(cos(ϕ+ ϕ+ . . .+ ϕ︸ ︷︷ ︸
n times

) + i sin(ϕ+ ϕ+ . . .+ ϕ︸ ︷︷ ︸
n times

))

= rn(cosnϕ+ i sinnϕ). �

Remarks.

1) We find again that |zn| = |z|n.

2) If r = 1, then (cosϕ+ i sinϕ)n = cosnϕ+ i sinnϕ.

3) We can write

Arg (zn) = {nargz + 2kπ : k ∈ Z} .
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Theorem. Let z1 = r1(cosϕ1 + i sinϕ1) and z2 = r2(cosϕ2 + i sinϕ2) 6= 0. Then

z1

z2

=
r1

r2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)) .

Proof. We have

z1

z2

=
r1(cosϕ1 + i sinϕ1)

r2(cosϕ2 + i sinϕ2)

=
r1(cosϕ1 + i sinϕ1)(cosϕ2 − i sinϕ2)

r2(cosϕ2 + i sinϕ2)(cosϕ2 − i sinϕ2)

=
r1

r2

((cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + i(sinϕ1 cosϕ2 − sinϕ2 cosϕ1))

=
r1

r2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)) . �

Remarks.

1) We find again that
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| .

2) We can write

Arg

(
z1

z2

)
= {argz1 − argz2 + 2kπ : k ∈ Z} .

3) For z1 = 1 and z2 = z we get

1

z
= z−1 =

1

r
(cos(−ϕ) + i sin(−ϕ)) .

4) De Moivre’s formula also holds for negative integer exponents n, that is we have

zn = rn(cosnϕ+ i sinnϕ) for n ∈ Z.

Definition. Let z ∈ C. Any solution w of the equation

wn = z

is called the nth root of a complex number z.

Theorem. Let z = r(cosϕ + i sinϕ) be a complex number with r > 0 and ϕ ∈ [0, 2π).

The number z has n distinct nth roots given by

zk = n
√
r

(
cos

ϕ+ 2kπ

n
+ i sin

ϕ+ 2kπ

n

)
for k = 0, 1, . . . , n− 1.

Proof. We look for all solutions of the equation wn = z. Let w = ρ(cosα+ i sinα), where

ρ > 0 and α ∈ R. By De Moivre’s formula

wn = ρn(cosnα + i sinnα) = r(cosϕ+ i sinϕ).
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Hence, ρn = r and nα = ϕ+ 2kπ, where k ∈ Z. Thus,

ρ = n
√
r and α =

ϕ+ 2kπ

n
.

Finally, let zk = n
√
r
(
cos ϕ+2kπ

n
+ i sin ϕ+2kπ

n

)
be a root which corresponds with k. Since

trigonometric functions are periodic, roots zk and zk+n do cover. So, there are n distinct

roots z0, z1, . . . , zn−1 of z. �

Remark. The geometric images of the nth roots of a complex number z 6= 0 are the

vertices of a regular n-gon inscribed in a circle with center at the origin and radius n
√
r.

Example. Let us find the fourth roots of the number z = −1
2

+
√

3
2
i and represent them

in the complex plane. We have r = 1, ϕ = 2
3
π and

z = 1 ·
(

cos
2

3
π + i sin

2

3
π

)
.

Hence the fourth roots of z are

zk =
4
√

1

(
cos

2
3
π + 2kπ

4
+ i sin

2
3
π + 2kπ

4

)
for k = 0, 1, 2, 3. Thus we have

z0 = cos
π

6
+ i sin

π

6
=

√
3

2
+

1

2
i,

z1 = cos
2

3
π + i sin

2

3
π = −1

2
+

√
3

2
i,

z2 = cos
7

6
π + i sin

7

6
π = −

√
3

2
− 1

2
i,

z3 = cos
5

3
π + i sin

5

3
π =

1

2
−
√

3

2
i

and

-

6

&%
'$

Rez

Imz

1

1

·XXX
�
�
�

z0
·
�
�
�

z1

·z2 ·XXX z3

So we get the regular 4-gon, that is, the square with vertices z0, z1, z2, z3.
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2. Matrices and determinants

Definition. A matrix is a rectangular array of (real or complex) numbers arranged in

rows and columns.

A general matrix with m rows and n columns is written as follows:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .
The above matrix consists of m ·n elements, giving the m×n array. The symbol m×n

is read ”m by n” and is called the size of the above matrix. Notation aij denotes an

element in the ith row and jth column of a matrix.

If m = n, then a matrix is called a square matrix, and the number of rows is called its

order. A square matrix of order n is also called an n×n matrix. The diagonal containing

elements a11, a22, . . . , ann of such matrix is called the main diagonal. If m 6= n, then a

matrix is called rectangular matrix of an n× n matrix.

Examples.

1) Matrix

 2 1

−1 3

0 −2

 is a 3× 2 matrix.

2) Matrix

[
2 3

1 0

]
is a 2× 2 matrix or a square matrix of order 2.

Matrices will usually be denoted by Roman capital letters: A,B,C, . . ., or by Am×n or

A = [aij] or A = [aij]m×n.

Let F = R (or C). We denote by Mm×n(F) the set of all m× n matrices with elements

in F.

Definition. A square matrix is called triangular iff

(aij = 0 for i > j) or (aij = 0 for i < j),

so 
a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

 or


a11 0 . . . 0

a21 a22 . . . 0
...

...
. . .

...

am1 am2 . . . ann
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The first matrix is called an upper triangular matrix and the second is called a lower

triangular matrix. We see that a triangular matrix is a square matrix whose elements

below the main diagonal (or above the main diagonal) are all zero.

Definition. A square matrix of the form

A =


a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

 .
is called a diagonal matrix. Another notation for the above diagonal matrix is

A = diag[a11a22 · · · ann].

Notice that a diagonal matrix may have nonzero elements only on the main diagonal. It

means that a diagonal matrix is a triangular matrix (an upper as well as a lower).

Definition. A square matrix of the form

I =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 .
is called a unit matrix or an identity matrix.

Definition. A matrix with all zero elements is called a zero matrix and is denoted by 0,

so

0 =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 .
Notice that a zero matrix may be a rectangular or square matrix.

Definition. Matrices A and B are equal, written A = B iff

1) A and B are of the same size,

2) all corresponding elements are equal, so aij = bij for all i, j.

Definition. (Matrix addition) Let A = [aij], B = [bij] ∈ Mm×n(F). The sum A+ B is

the matrix C = [cij] ∈Mm×n(F) such that

cij = aij + bij.

Remark. We see that A + B is obtained by adding the corresponding elements of A

and B.
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Definition. (Scalar multiplication) Let A ∈ Mm×n(F) and λ ∈ F. The product of λ

and A, written λA, is defined to be

λA =


λa11 λa12 . . . λa1n

λa21 λa22 . . . λa2n

...
...

. . .
...

λam1 λam2 . . . λamn

 .

Theorem. (Properties of matrix addition and scalar multiplication) LetA,B,C ∈
Mm×n(F) and λ, β ∈ F. Then

1) A+B = B + A,

2) (A+B) + C = A+ (B + C),

3) A+ 0 = A,

4) 1A = A,

5) −A = −1A,

6) A+ (−A) = 0,

7) λ(A+B) = λA+ λB,

8) (λ+ β)A = λA+ βA,

9) λ(βA) = (λβ)A.

Proof. Easy. �

Definition. (Matrix multiplication) Let A = [aij] ∈ Mm×n(F) and B = [bij] ∈
Mn×p(F). The product A ·B is the matrix C = [cij] ∈Mm×p(F) such that

cij =
n∑
k=1

aikbkj,

where i = 1, 2, . . . ,m and j = 1, 2, . . . , p.

Remark. Note that element cij is obtained by multiplying ith row of A by jth column

of B, so it depends on all elements in row i of A and on all elements in column j of B.

Remark. The product A ·B of two matrices A and B is defined if number of columns in

A equals number of rows in B.

Example. We calculate

3×2 1 −1

2 1

0 2

 ·
2×3[

1 −2 0

1 3 −1

]
=

3×3 0 −5 1

3 −1 −1

2 6 −2

.
Theorem. (Properties of matrix multiplication) Let matrices A,B,C be such that

sums and products in below properties are defined. Then

1) (A ·B) · C = A · (B · C),
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2) A · (B + C) = A ·B + A · C,

3) (B + C) · A = B · A+ C · A,

4) λ(A ·B) = (λA) ·B = A · (λB), where λ ∈ F.

Proof. Easy. �

Examples.

1) Let us take matrices

A =

[
1 1

2 2

]
and B =

[
−1 1

1 −1

]
.

Then

A ·B =

[
0 0

0 0

]
.

So, we see that A ·B = 0 does not necessarily imply A = 0 or B = 0.

2) Let us take the same matrices A,B. Then

A ·B =

[
0 0

0 0

]
and B · A =

[
1 1

−1 −1

]
.

So, we see that products A ·B and B · A of matrices A and B need not be equal.

Definition. (Transpose of a matrix) Let A ∈Mm×n(F). The transpose AT of a matrix

A is a matrix obtained by interchanging rows and columns in A.

Remark. Note that if the size of A is m× n, then the size of AT is n×m.

Example. Let A =

 2 1

−1 0

1 1

. Then AT =

[
2 −1 1

1 0 1

]
.

Theorem. Let matrices A,B be such that operations in below properties are defined.

Then

1) (A+B)T = AT +BT ,

2)
(
AT
)T

= A,

3) (λA)T = λAT , where λ ∈ F.

Proof. Let A = [aij]m×n, B = [bij]m×n, AT = [a′ij]n×m and BT = [b′ij]n×m.

1) Let C = A+B = [cij] and C = [c′ij]. Then

c′ij = cji = aji + bji = a′ij + b′ij.

So, 1) holds.
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2) We have

(a′ij)
′ = (aji)

′ = aij.

Thus also 2) holds.

3) We easily get

(λaij)
′ = λa′ij.

Hence point 3) holds too. �

Definition. A square matrix A is called symmetric if AT = A.

Remark. The symmetry in a symmetric matrix occurs about its main diagonal.

Examples.

1) Let A =

 1 2 0

2 1 4

0 4 2

. Then AT =

 1 2 0

2 1 4

0 4 2

. So, AT = A, that is, A is symmetric.

2) Let A =

[
1 2

1 1

]
. Then AT =

[
1 1

2 1

]
. So, AT 6= A, that is, A is not symmetric.

Definition. A square matrix A is called skew-symmetric if AT = −A.

Remark. Note that in the above definition we have ajj = −ajj, which implies that

elements in main diagonal of a skew-symmetric matrix are all zero.

Example. Let A =

 0 4 −1

−4 0 2

1 −2 0

. Then AT =

 0 −4 1

4 0 −2

−1 2 0

. So, AT = −A,

that is, A is skew-symmetric.

Remark. Notice that it possible that a square matrix is neither a symmetric nor skew-

symmetric matrix.

Theorem. Let A be a square matrix. Then A + AT is symmetric and A − AT is skew-

symmetric.

Proof. We have (
A+ AT

)T
= AT +

(
AT
)T

= AT + A = A+ AT ,

that is, A+ AT is symmetric, and(
A− AT

)T
= AT +

(
−AT

)T
= AT −

(
AT
)T

= AT − A = −
(
A− AT

)
,

that is, A− AT is skew-symmetric. �

Theorem. Any square matrix can be written as a sum of a symmetric and skew-

symmetric matrix.
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Proof. We have

A =

(
1

2
+

1

2

)
A =

1

2
A+

1

2
A =

1

2
A+

1

2
AT − 1

2
AT +

1

2
A =

1

2

(
A+ AT

)
+

1

2

(
A− AT

)
.

By previous Theorem we have that 1
2

(
A+ AT

)
is symmetric and 1

2

(
A− AT

)
is skew

symmetric. Thus the proof is finished. �

Theorem. If A ·B is defined, then

(A ·B)T = BT · AT .

Proof. Let A = [aij]m×n, B = [bij]n×p and A ·B = C. Then C = [cij]m×p and

cij =
n∑
k=1

aikbkj,

where i = 1, 2, . . . ,m and j = 1, 2, . . . , p. Let AT = [a′ij], B
T = [b′ij] and CT = [c′ij]. Then

c′ij = cji =
n∑
k=1

ajkbki =
n∑
k=1

a′kjb
′
ik =

n∑
k=1

b′ika
′
kj.

Hence we have shown that the ijth element of CT is equal to the ijth element of BT ·AT .

�

Remark. If the product A ·B · C is defined, then

(A ·B · C)T = CT ·BT · AT .

The same result holds for any finite number of factors, that is,

(A1 · A2 · · ·An−1 · An)T = ATn · ATn−1 · · ·AT2 · AT1 .

Theorem. Let A be a symmetric matrix of order n and B be an n ×m matrix. Then

BT · A ·B is a symmetric matrix of order m.

Proof. Since A is symmetric, it follows AT = A. We have(
BT · A ·B

)T
= BT · AT ·

(
BT
)T

= BT · A ·B. �

Definition. (Trace of a square matrix) Let A = [aij] ∈ Mn×n(F). The trace of a

matrix A is a number

tr(A) =
df

n∑
i=1

aii.

Examples.

1) Let A =

[
1 4

3 −3

]
. Then tr(A) = 1− 3 = −2.
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2) Let A =

 2 4 −1

3 −2 6

0 3 5

. Then tr(A) = 2− 2 + 5 = 5.

Theorem. Let A,B ∈Mn×n(F). Then

1) tr(A+B) = tr(A) + tr(B),

2) tr(A) = tr(AT ),

3) tr(A ·B) = tr(B · A),

4) tr(λA) = λtr(A), where λ ∈ F.

Proof. Let A = [aij] and B = [bij].

1) We have

tr(A+B) =
n∑
i=1

(aii + bii) =
n∑
i=1

aii +
n∑
i=1

bii = tr(A) + tr(B).

2) We easily get

tr(A) =
n∑
i=1

aii = tr(AT ).

3) Let A ·B = [cij] and B · A = [c′ij]. By definition of matrix multiplication we have

tr(A ·B) =
n∑
i=1

cii =
n∑
i=1

(
n∑
k=1

aikbki

)
=

n∑
i=1

(
n∑
k=1

bkiaik

)

=
n∑
k=1

(
n∑
i=1

bkiaik

)
=

n∑
k=1

c′kk = tr(B · A).

4) Again we easily get

tr(λA) =
n∑
i=1

λaii = λ
n∑
i=1

aii = λtr(A). �

Definition. (Determinant) Let A ∈Mn×n(F). The determinant of a matrix A, denoted

by det(A) or |A|, is a single number associated with A in the following way:

1) if n = 1, then A = [a11] and det(A) = a11,

2) if n = 2, then A =

[
a11 a12

a21 a22

]
and

det(A) =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21,
ZZ

ZZ

ZZ~ j+
��

��

�
�=j−
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3) if n > 1, let Mij denotes the determinant of the (n−1)×(n−1) submatrix of A obtained

by deleting its ith row and jth column. The determinant Mij is called the minor of an

element aij. Then

det(A) =
n∑
i=1

(−1)i+jaijMij,

where j can be a number of any column of A. The product (−1)i+jMij is called the

cofactor of an element aij. The determinant of A can be also written as

det(A) =
n∑
j=1

(−1)i+jaijMij,

where i can be a number of any row of A.

We try to illustrate the application of the first formula from 3) for n = 3, so for a

matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Let j = 1 (column 1). Then

M11 =

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ = a22a33 − a23a32,

M21 =

∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣ = a12a33 − a13a32,

M31 =

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣ = a12a23 − a13a22

and

det(A) =
3∑
i=1

(−1)i+1ai1Mi1

= (−1)1+1a11M11 + (−1)2+1a21M21 + (−1)3+1a31M31

= a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a13a22).

Hence,

det(A) = a11a22a33 + a13a21a32 + a12a23a31 − a11a23a32 − a12a21a33 − a13a22a31.

The above expression need not be memorized. It can be obtained as follows:
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det(A) =

∣∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

QQ

QQ

QQ

QQs j+

QQ

QQ

QQ

QQs j+

QQ

QQ

QQ

QQs j+

��
��

��

��=j−

��
��

��

��=j−

��
��

��

��=j−
Example. We can calculate:∣∣∣∣∣∣∣

1 2 1 1 2

0 1 3 0 1

0 1 2 0 1

= 1 · 1 · 2 + 2 · 3 · 0 + 1 · 0 · 1− 1 · 1 · 0− 1 · 3 · 1− 2 · 0 · 2 = 2− 3 = −1.

Example. Using second formula from 3), we get (for i = 1):∣∣∣∣∣∣∣∣∣
1 2 3 0

4 2 1 0

1 2 0 −1

2 0 −1 −1

∣∣∣∣∣∣∣∣∣ = (−1)1+1 · 1 ·

∣∣∣∣∣∣∣
2 1 0

2 0 −1

0 −1 −1

∣∣∣∣∣∣∣+ (−1)1+2 · 2 ·

∣∣∣∣∣∣∣
4 1 0

1 0 −1

2 −1 −1

∣∣∣∣∣∣∣
+ (−1)1+3 · 3 ·

∣∣∣∣∣∣∣
4 2 0

1 2 −1

2 0 −1

∣∣∣∣∣∣∣ = 1 · (2− 2)− 2 · (−2 + 1− 4)

+ 3 · (−8− 4 + 2) = −20.

The evaluation of determinants of high order is a lengthy process. Now we establish a

number of important theorems leading us to rapid methods of evaluating determinants.

Theorem. (Transposition) Let A be a square matrix. Then

det(AT ) = det(A).

Proof. Proof is by induction. Let A be a 2× 2 matrix. Then

A =

[
a11 a12

a21 a22

]
, AT =

[
a11 a21

a12 a22

]
and

det(A) =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21 =

∣∣∣∣∣ a11 a21

a12 a22

∣∣∣∣∣ = det(AT ).

Thus the result holds for 2× 2 matrices. Assume now that the result holds for (n− 1)×
(n− 1) matrices. Consider an n× n matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 .
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Let Aij denotes a minor of an element aij of A. By Bij we denote a minor of an element

a′ij of AT . Expand det(AT ) in terms of an nth row and det(A) in terms of an nth column

to get

det(AT ) =

∣∣∣∣∣∣∣∣∣∣
a11 a21 . . . an1

a12 a22 . . . an2

...
...

. . .
...

a1n a2n . . . ann

∣∣∣∣∣∣∣∣∣∣
=

n∑
i=1

(−1)n+iainBin

=
n∑
i=1

(−1)i+nainAin (since Bin = Ain)

= det(A).

By induction, theorem holds for all square matrices. �

Theorem. (Interchange of rows or columns) Let A,B be square matrices. If B is

obtained from A by interchanging two rows or two columns, then

det(B) = −det(A).

Proof. Proof is by induction. Indeed, theorem holds for determinants of square matrices

of order 2. Assume that it holds for determinants of square matrices of order n− 1. Let

A be a square matrix of order n, and B be obtained from A by interchanging two rows.

Expand det(A) and det(B) in terms of a row which is not one of those interchanged, call

it ith row. Then

det(B) =
n∑
j=1

(−1)i+jaijBij

and

det(A) =
n∑
j=1

(−1)i+jaijAij,

where minor Bij is obtained from minor Aij of aij in A by interchanging two rows. Notice

that minors Aij and Bij are determinants of square matrices of order n−1, so by assump-

tion, we have Bij = −Aij. It gives det(B) = −det(A). By induction, theorem holds for

all square matrices. Proof for columns is similar. �

Theorem. (Proportional rows or columns) Let A be a square matrix. If two rows

or two columns of A are proportional, then

det(A) = 0.
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Proof. Interchange two proportional rows and use previous theorem to obtain

det(A) = −det(A).

So, 2det(A) = 0, that is, det(A) = 0. �

Remark. Observe that a square matrix with two identical rows or two identical colums

has a zero determinant.

Example. Let

A =


1 2 4 −1

0 1 3 0

2 4 8 −2

0 5 1 7

 .
Then, det(A) = 0, since two rows (first and third) are proportional.

Theorem. (Multiplication by a constant) Let A be a square matrix. If all elements

of one row or one column of A are multiplied by a constant c, then a determinant of A is

multiplied by c.

Proof. Expand a determinant by that row or column whose elements are multiplied by

c. �

From previous theorem with c = 0 we get the following theorem.

Theorem. Let A be a square matrix. If all elements of one row or one column of A are

zero, then a determinant of A is zero.

Example. By above theorem we have∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5

0 0 0 0 0

1 3 5 −2 1

0 2 −1 4 3

2 3 −1 4 −3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Theorem. (Addition of a row or column) The value of a determinant is unchanged

if a scalar multiple of one row (or column) is added to another row (or column).

Proof. We prove the result for rows, proof for columns is similar. Assume that A =

[aij]n×n and B = [bij]n×n. Let B be obtained from A be adding a multiple of an sth row

to an ith row. Then bij = aij + casj. Notice that all elements in rows other than an ith

row of B are identical to corresponding elements in A. Now expand det(B) in terms of

an ith row. Let Bij be a minor of an element bij of B. By Aij we denote a minor of an
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element aij of A. Then we have

det(B) =
n∑
j=1

(−1)i+jbijBij =
n∑
j=1

(−1)i+j(aij + casj)Aij

=
n∑
j=1

(−1)i+jaijAij + c

n∑
j=1

(−1)i+jasjAij

= det(A) + cdet(A),

where A is a matrix obtained from A by replacing an ith row by an sth row. So, det(A) =

0, because an ith row and an sth row of A are identical. Thus,

det(B) = det(A). �

Example. By above theorem we calculate∣∣∣∣∣∣∣∣∣∣∣∣

1 4 −3 1 5

0 1 3 1 2

−1 0 4 2 0

2 1 1 0 1

0 0 1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
r3+r1=
r4−2r2

∣∣∣∣∣∣∣∣∣∣∣∣

1 4 −3 1 5

0 1 3 1 2

0 4 1 3 5

0 −7 7 −2 −9

0 0 1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+1 · 1 ·

∣∣∣∣∣∣∣∣∣
1 3 1 2

4 1 3 5

−7 7 −2 −9

0 1 −1 1

∣∣∣∣∣∣∣∣∣
c3+c2=
c4−c2

∣∣∣∣∣∣∣∣∣
1 3 4 −1

4 1 4 4

−7 7 5 −16

0 1 0 0

∣∣∣∣∣∣∣∣∣ = (−1)4+2 · 1 ·

∣∣∣∣∣∣∣
1 4 −1

4 4 4

−7 5 −16

∣∣∣∣∣∣∣ c2−4c1=
c3+c1

∣∣∣∣∣∣∣
1 0 0

4 −12 8

−7 33 −23

∣∣∣∣∣∣∣ =

(−1)1+1 · 1 ·

∣∣∣∣∣ −12 8

33 −23

∣∣∣∣∣ = 276− 264 = 12.

Theorem. Let A be a triangular matrix. Then a determinant of A equals product of

diagonal elements.

Proof. Let A be an upper triangular matrix of order n, that is,

A =


a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n

...
...

...
. . .

...

0 0 0 . . . ann

 .
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We have

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n

...
...

...
. . .

...

0 0 0 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣
= a11 ·

∣∣∣∣∣∣∣∣∣∣
a22 a23 . . . a2n

0 a33 . . . a3n

...
...

. . .
...

0 0 . . . ann

∣∣∣∣∣∣∣∣∣∣
= a11a22 ·

∣∣∣∣∣∣∣
a33 . . . a3n

...
. . .

...

0 . . . ann

∣∣∣∣∣∣∣ = . . . = a11a22 · · · ann.

It means that theorem holds. Proof for a lower triangular matrix is similar. �

Remark. From above theorem we get

det(I) = 1.

Theorem. If each element of a row or a column of a determinant is expressed as a

binomial, then that determinant can be written as a sum of two determinants.

Proof. Expand a determinant by a row or a column whose elements are binomials. �

Theorem. (Cauchy) Let A,B ∈Mn×n(F). Then

det(A ·B) = det(A)det(B).

(without proof)

Remark. Let A,B ∈Mn×n(F). Then

det(A ·B) = det(B · A).

Remark. Let A be a square matrix. Then

det(Ak) = (det(A))k.

Remark. Let A ∈Mn×n(F) and λ ∈ F. Then

det(λA) = λndet(A).

Remark. Observe that the equality

det(A) + det(B) = det(A+B)

does not have to be true for matrices A,B ∈Mn×n(F).
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Example. Let

A =

[
3 2

−1 1

]
and B =

[
0 −1

1 2

]
.

We have det(A) = 5, det(B) = 1 and

A+B =

[
3 2

−1 1

]
+

[
0 −1

1 2

]
=

[
3 1

0 3

]
.

Then

det(A+B) = 9 6= det(A) + det(B) = 6.

Definition. (Inverse of a matrix) Let A be a square matrix. The inverse of a matrix

A is a matrix A−1 such that

A · A−1 = A−1 · A = I.

Definition. (Invertible matrix) A square matrix A is called invertible if an inverse

A−1 of A exists.

Example. Matrix

[
4
5
−3

5
1
5
−2

5

]
is an inverse of matrix

[
2 −3

1 −4

]
, because

[
2 −3

1 −4

]
·

[
4
5
−3

5
1
5
−2

5

]
=

[
4
5
−3

5
1
5
−2

5

]
·

[
2 −3

1 −4

]
=

[
1 0

0 1

]
= I.

Remark. The unit matrix I is an inverse of itself, because I · I = I. That is, I−1 = I.

Theorem. An inverse (if it exists) of a square matrix A is unique.

Proof. Assume that B and C are inverses of A, so A · B = I and C · A = I. Then we

have

B = I ·B = (C · A) ·B = C · (A ·B) = C · I = C.

It proves that an inverse of a matrix A is uniquely determined. �

Remark. Notice that the zero matrix 0 = 0n×n has no inverse, because for any square

matrix A of order n, we have A · 0 = 0 · A = 0.

Now we will give a formula of an inverse of a matrix. Consider a square matrix A of

order n:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 .
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Let Mij be a minor an element aij, that is, a determinant of an (n−1)×(n−1) submatrix

of A obtained by deleting its ith row and jth column. Then a cofactor Aij of aij is given

by

Aij = (−1)i+jMij.

Construct a transpose AT of A. The adjoint of A, written adj(A), is a matrix obtained

by replacing any element of AT by Aij, so

adj(A) =


A11 A21 . . . An1

A12 A22 . . . An2

...
...

. . .
...

A1n A2n . . . Ann

 .

Theorem. For any square matrix A the formula

A · adj(A) = adj(A) · A = det(A) · I

holds. If det(A) 6= 0, then

A−1 =
1

det(A)
adj(A).

Proof. Let C = A · adj(A) and C = [cij]. Then

cij =
n∑
k=1

aikAkj =
n∑
k=1

(−1)k+jaikMkj =

{
det(A) if i = j,

0 if i 6= j.

Explanation: (1) if i = j, then Mki is a minor of aki of AT , so of aik of A, that is,

cij = det(A) in that case; (2) if i 6= j, then aik = aki and a jth column is replaced by an

ith column, so there are two identical columns in a determinant, that is, cij = 0.

Thus the first formula is satisfied. The rest of this theorem is evident. �

Remark. Above theorem gives us an important method of obtaining an inverse of a

matrix.

Example. We will find an inverse of a matrix

A =

 1 −2 3

1 −1 1

−1 −1 2

 .
First we have det(A) = −1 6= 0, so an inverse of A exists. Next

AT =

 1 1 −1

−2 −1 −1

3 1 2

 and adj(A) =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
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where Aij = (−1)i+jMij for i, j = 1, 2, 3. Thus we have

A11 = (−1)1+1

∣∣∣∣∣ −1 −1

1 2

∣∣∣∣∣ = −1, A12 = (−1)1+2

∣∣∣∣∣ −2 −1

3 2

∣∣∣∣∣ = 1, A13 = (−1)1+3

∣∣∣∣∣ −2 −1

3 1

∣∣∣∣∣ = 1,

A21 = (−1)2+1

∣∣∣∣∣ 1 −1

1 2

∣∣∣∣∣ = −3, A22 = (−1)2+2

∣∣∣∣∣ 1 −1

3 2

∣∣∣∣∣ = 5, A23 = (−1)2+3

∣∣∣∣∣ 1 1

3 1

∣∣∣∣∣ = 2,

A31 = (−1)3+1

∣∣∣∣∣ 1 −1

−1 −1

∣∣∣∣∣ = −2, A32 = (−1)3+2

∣∣∣∣∣ 1 −1

−2 −1

∣∣∣∣∣ = 3, A33 = (−1)3+3

∣∣∣∣∣ 1 1

−2 −1

∣∣∣∣∣ = 1

and

adj(A) =

 −1 1 1

−3 5 2

−2 3 1

 .
Finally,

A−1 =
1

det(A)
adj(A) =

1

−1

 −1 1 1

−3 5 2

−2 3 1

 =

 1 −1 −1

3 −5 −2

2 −3 −1

 .
The above calculations can be verified by computing

A · A−1 =

 1 −2 3

1 −1 1

−1 −1 2

 ·
 1 −1 −1

3 −5 −2

2 −3 −1

 =

 1 0 0

0 1 0

0 0 1

 = I

and

A−1 · A =

 1 −1 −1

3 −5 −2

2 −3 −1

 ·
 1 −2 3

1 −1 1

−1 −1 2

 =

 1 0 0

0 1 0

0 0 1

 = I.

Definition. A square matrix A is called

1) singular if det(A) = 0,

2) nonsingular if det(A) 6= 0.

Theorem. (Existence of an inverse) An inverse of a square matrix A exists if and

only if A is nonsingular.

Proof. First assume that A−1 exists. Then A · A−1 = I and det(A · A−1) = 1, so

det(A) · det(A−1) = 1.

Hence det(A) 6= 0, that is, A is nonsingular.
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Conversely, let A be nonsingular. Hence det(A) 6= 0, and by previous Theorem we have

A−1 =
1

det(A)
adj(A),

that is, A−1 exists. �

Example. We will find all values of k for which matrix

A =


1 −1 −1 0

0 k 1 2

0 0 1 k

0 1 1 2


has an inverse. We know that A−1 exists iff det(A) 6= 0. We have

det(A) =

∣∣∣∣∣∣∣∣∣
1 −1 −1 0

0 k 1 2

0 0 1 k

0 1 1 2

∣∣∣∣∣∣∣∣∣ = (−1)2 · 1 ·

∣∣∣∣∣∣∣
k 1 2

0 1 k

1 1 2

∣∣∣∣∣∣∣ = 2k + k − 2− k2 = −k2 + 3k − 2

and −k2 + 3k− 2 = 0 for k ∈ {1, 2}. Hence matrix A has an inverse for k 6= 1 and k 6= 2.

Theorem. Let A,B be nonsingular matrices of the same order. Then

1) det(A−1) = 1
det(A)

,

2) (A ·B)−1 = B−1 · A−1,

3) (A−1)
−1

= A,

4)
(
AT
)−1

= (A−1)
T

,

5) (λA)−1 = 1
λ
A−1, where λ ∈ F\{0}.

Proof. Let us take two nonsingular matrices A,B of the same order.

1) Since A−1 · A = I, it follows that det(A−1 · A) = 1. Hence, det(A−1) · det(A) = 1,

that is,

det(A−1) =
1

det(A)
.

2) We easily get

(A ·B)−1 = (A ·B)−1 · A ·B ·B−1 · A−1 = I ·B−1 · A−1 = B−1 · A−1.

3) By point 2) we have(
A−1

)−1
=
(
A−1

)−1 · A−1 · A =
(
A · A−1

)−1 · A = I−1 · A = I · A = A.
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4) Again by point 2) we get(
AT
)−1

=
(
AT
)−1 ·

((
A−1

)T)−1

·
(
A−1

)T
=
((
A−1

)T · AT)−1

·
(
A−1

)T
=
((
A · A−1

)T)−1

·
(
A−1

)T
=
(
IT
)−1 ·

(
A−1

)T
= I ·

(
A−1

)T
=
(
A−1

)T
.

5) We have

(λA)−1 = (λA)−1 ·
(

1

λ
A−1

)−1

· 1

λ
A−1 =

(
1

λ
A−1 · λA

)−1

· 1

λ
A−1

=
(
A−1 · A

)−1 · 1

λ
A−1 = I−1 · 1

λ
A−1 = I · 1

λ
A−1

=
1

λ
A−1. �

Example. Let A,B be two 4 × 4 nonsingular matrices. We will compute det(B−1), if

B = 2A and AB = −I. We have

det(B) = det(2A)

det(B) = 24 · det(A)

det(B) = 16 · det(A)

det(A) =
1

16
det(B).

and

det(AB) = det(−I)

det(A)det(B) = (−1)4det(I)

det(A)det(B) = 1

1

16
(det(B))2 = 1

(det(B))2 = 16,

det(B) = 4 ∨ det(B) = −4.

Finally,

det(B−1) =
1

4
∨ det(B−1) = −1

4
.
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3. Systems of linear equations

Definition. A system of m linear equations in n unknowns x1, x2, . . . , xn is a set of

equations of the form: 
a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,
...

am1x1 + am2x2 + . . .+ amnxn = bm,

where aij ∈ R are called the coefficients of a system, and bi ∈ R.

Remark. A system of linear equations can be written in the form:

AX = B,

where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 , X =


x1

x2

...

xn

 , B =


b1

b2

...

bm

 .
A matrix A is called the coefficient matrix of a system.

Definition. A system of linear equations AX = B is called

1) homogeneous if B = 0,

2) nonhomogeneous if B 6= 0.

Definition. A system of linear equations AX = B is called the Cramer’s system if A is

a square nonsingular matrix.

Theorem. Let A be a square matrix of order n. A Cramer’s system AX = B has

precisely one solution. This solution is given by formulas:

x1 =
D1

D
, x2 =

D2

D
, . . . , xn =

Dn

D
,

where D = det(A), and Dk, for k = 1, 2, . . . , n, is a determinant obtained from D by

replacing in D a kth column by column B.

Proof. First, we have

AX = B, A−1AX = A−1B, X = A−1B.
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Now, let A−1 = C = [cij]. From definition of a matrix multiplication and by the formula

of an inverse matrix we get

xk =
n∑
i=1

ckibi =
n∑
i=1

Aik
det(A)

bi =
1

det(A)

n∑
i=1

Aikbi =
Dk

D

for k = 1, 2, . . . , n. �

Remark. If a Cramer’s system is homogeneous, then D1 = 0, D2 = 0, . . . , Dn = 0, that

is, it has only the zero solution x1 = 0, x2 = 0, . . . , xn = 0.

Example. Using Cramer’s formulas we solve the following system
x1 + x2 + x3 = 0,

2x1 + 5x2 + 3x3 = 1,

−x1 + 2x2 + x3 = 2.

We have

A =

 1 1 1

2 5 3

−1 2 1

 , X =

 x1

x2

x3

 , B =

 0

1

2

 .
Now,

D = det(A) =

∣∣∣∣∣∣∣
1 1 1

2 5 3

−1 2 1

∣∣∣∣∣∣∣ = 3

and

D1 =

∣∣∣∣∣∣∣
0 1 1

1 5 3

2 2 1

∣∣∣∣∣∣∣ = −3, D2 =

∣∣∣∣∣∣∣
1 0 1

2 1 3

−1 2 1

∣∣∣∣∣∣∣ = 0, D3 =

∣∣∣∣∣∣∣
1 1 0

2 5 1

−1 2 2

∣∣∣∣∣∣∣ = 3.

So,

x1 =
D1

D
= −1, x2 =

D2

D
= 0, x3 =

D3

D
= 1.

Theorem. (Method of matrix inversion) A solution of a Cramer’s system AX = B

is given by a formula

X = A−1B.

Proof. We easily have

AX = B, A−1AX = A−1B, X = A−1B. �
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Example. Using method of matrix inversion we solve the following system
2x1 − x2 + x3 = 3,

x1 + 2x2 − x3 = −1,

3x1 + x2 + 2x3 = 2.

Now,

A =

 2 −1 1

1 2 −1

3 1 2

 , X =

 x1

x2

x3

 , B =

 3

−1

2

 .
We have det(A) = 10 and

A−1 =
1

10

 5 3 −1

−5 1 3

−5 −5 5

 .
Thus,

X = A−1B =
1

10

 5 3 −1

−5 1 3

−5 −5 5

 ·
 3

−1

2

 =

 1

−1

0

 .

Method of Gaussian elimination

We explain this method on examples.

Example. Using method of Gaussian elimination we solve the following system
x1 + x2 + x3 = 0,

2x1 + 5x2 + 3x3 = 1,

−x1 + 2x2 + x3 = 2.

We have

A =

 1 1 1

2 5 3

−1 2 1

 , X =

 x1

x2

x3

 , B =

 0

1

2

 .
The whole elimination procedure can be systematized by operating directly on the fol-

lowing matrix

[A|B] =

 1 1 1 0

2 5 3 1

−1 2 1 2

 .
This matrix is called the augmented matrix of the given system. Instead of performing

transformations on the system of linear equations, we can perform equivalent transforma-

tions on augmented matrix. These transformations are of three types:
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1) interchanging two rows of the matrix (ri ↔ rj),

2) multiplying a row by a nonzero constant (c · ri, c 6= 0),

3) adding a multiple of one row of the matrix to another row (ri + c · rj).

We say that two matrices are equivalent if one is obtained from the other using the above

transformations.

We have

[A|B] =

 1 1 1 0

2 5 3 1

−1 2 1 2

 r2−2r1−→
r3+r1

 1 1 1 0

0 3 1 1

0 3 2 2

 r3−r2−→

 1 1 1 0

0 3 1 1

0 0 1 1


r1−r3−→
r2−r3

 1 1 0 −1

0 3 0 0

0 0 1 1

 r1− 1
3
r2−→

1
3
r2

 1 0 0 −1

0 1 0 0

0 0 1 1

 .
Thus, 

x1 = −1,

x2 = 0,

x3 = 1.

Definition. (Rank of a matrix) Let A ∈ Mm×n(R). The rank of a matrix, written

r(A), is the largest integer r for which a nonsingular r × r submatrix of A exists. A zero

matrix is said to have rank 0.

Remark. Observe that r(A) ≤ min(m,n). Moreover, the rank of an nth order identity

matrix is n.

Example. Consider the matrix A =

[
1 2

2 1

]
. We see that matrix A is nonsingular. It

means that r(A) = 2.

Remark. We have some simple operations on rows and columns of a matrix which do

not change its rank. These operations are: interchange two rows of the matrix (ri ↔ rj),

multiplication of a row by a nonzero constant (c · ri, c 6= 0), addition to an ith row a jth

row multiplied by a constant (ri + c · rj). The same types of operations can be used on

columns. By applying such operations it is possible to convert a matrix into one whose

rank can be read off by looking at the matrix.

Example. We determine a rank of the following matrix

A =


1 2 −3

2 1 0

−2 −1 3

−1 4 −2

 .
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We see that A is the 4× 3 matrix, so r(A) ≤ 3. We have

r(A) = r




1 2 −3

2 1 0

−2 −1 3

−1 4 −2


 r2−2r1=

r3+r2
r4+r1

r




1 2 −3

0 −3 6

0 0 3

0 6 −5


 = 3,

since ∣∣∣∣∣∣∣
1 2 −3

0 −3 6

0 0 3

∣∣∣∣∣∣∣ = −9 6= 0.

Theorem. Let A ∈Mm×n(R). Then

r(A) = r(AT ).

Proof. Easy. �

Theorem. Let A be a square matrix of order n. The following are equivalent:

1) A is invertible,

2) A is nonsingular,

3) r(A) = n,

4) a system AX = B has a unique solution for any n× 1 matrix B.

Proof. Easy. �

Theorem. (Kronecker-Capelli) Let A ∈Mm×n(R). A system AX = B has a solution

if and only if

r(A) = r(A|B).

Moreover, let r(A) = r(A|B) = r. Then

1) if r = n, then there is precisely one solution,

2) if r < n, then there are infinitely many solutions which depend on n− r parameters.

(without proof)

Conclusion. A homogeneous system AX = B has a solution because r(A) = r(A|B).

Now we give several examples illustrating Kronecker-Capelli’s Theorem.

Example. Take the following system{
x1 + 2x2 − 3x3 = 2,

5x1 − x2 + x3 = 1.
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We have

A =

[
1 2 −3

5 −1 1

]
, X =

 x1

x2

x3

 , B =

[
2

1

]
.

First, using Kronecker-Capelli’s Theorem, let us find number of solutions of that system.

To do it we determine ranks of A and [A|B]. We have

[A|B] =

[
1 2 −3 2

5 −1 1 1

]
r2−5r1−→

[
1 2 −3 2

0 −11 16 −9

]
.

So, r(A) = r(A|B) = 2 < n = 3. Thus the system has infinitely many solutions depended

on n − r = 3 − 2 = 1 parameter. To solve that system let us transform the augmented

matrix [
1 2 −3 2

0 −11 16 −9

]
− 1

11
r2−→

[
1 2 −3 2

0 1 −16
11

9
11

]
r1−2r2−→

[
1 0 − 1

11
4
11

0 1 −16
11

9
11

]
.

Hence the solution is {
x1 = 4

11
+ 1

11
x3,

x2 = 9
11

+ 16
11
x3,

where x3 ∈ R.

Example. For the system 
10x1 − 2x2 + 8x3 = 1,

5x1 + x2 − 8x3 = 0,

15x1 − x2 = 0

we have

[A|B] =

 10 −2 8 1

5 1 −8 0

15 −1 0 0

 r1−2r2−→
r3−3r2
r1↔r2

 5 1 −8 0

0 −4 24 1

0 −4 24 0

 r3−r2−→

 5 1 −8 0

0 −4 24 1

0 0 0 −1

 .
So, r(A) = 2, because∣∣∣∣∣∣∣

5 1 −8

0 −4 24

0 0 0

∣∣∣∣∣∣∣ = 0 and

∣∣∣∣∣ 5 1

0 −4

∣∣∣∣∣ = −20 6= 0

and r(A|B) = 3, because ∣∣∣∣∣∣∣
5 1 0

0 −4 1

0 0 −1

∣∣∣∣∣∣∣ = 20 6= 0.

Hence, r(A) 6= r(A|B). Thus the system has no solution.
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Example. Now, we find values of k for which the system
kx1 + x2 + x3 = 1,

x1 + kx2 + x3 = k,

x1 + x2 + kx3 = k2

has a solution. We have k 1 1 1

1 k 1 k

1 1 k k2

 r1↔r3−→

 1 1 k k2

1 k 1 k

k 1 1 1

 r2−r1−→
r3−kr1

 1 1 k k2

0 k − 1 1− k k − k2

0 1− k 1− k2 1− k3


r3+r2−→

 1 1 k k2

0 k − 1 1− k k(1− k)

0 0 (1− k)(2 + k) (1− k)(1 + k)2

 .
Notice that for k = 1 we get  1 1 1 1

0 0 0 0

0 0 0 0

 ,
so in this case r(A) = r(A|B) = 1 < n = 3 and the system has infinitely many solutions

with n− r = 3− 1 = 2 parameters. Assume that k 6= 1. Then 1 1 k k2

0 k − 1 1− k k(1− k)

0 0 (1− k)(2 + k) (1− k)(1 + k)2

 1
1−k

r2
−→
1

1−k
r3

 1 1 k k2

0 −1 1 k

0 0 2 + k (1 + k)2

 .
We see that for k = −2 the augmented matrix takes the form 1 1 −2 4

0 −1 1 −2

0 0 0 1

 .
So the system has no solution because r(A) = 2 6= r(A|B) = 3. Now, consider the case

when k 6= 1 and k 6= −2. Looking at the matrix 1 1 k k2

0 −1 1 k

0 0 2 + k (1 + k)2


we see that r(A) = r(A|B) = 3 = n, which shows that the system has a unique solution.

Finally, the system has a solution for k 6= −2.

Example. Now, we discuss the solvability of the system
3x1 − 2x2 + x3 = b,

5x1 − 8x2 + 9x3 = 3,

2x1 + x2 + ax3 = −1.
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We get 3 −2 1 b

5 −8 9 3

2 1 a −1

 r2−2r1−→
r3−r1

 3 −2 1 b

−1 −4 7 3− 2b

−1 3 a− 1 −1− b

 −1·r2−→
r1↔r2
r2↔r3

 1 4 −7 2b− 3

−1 3 a− 1 −1− b
3 −2 1 b


r2+r1−→
r3−3r1

 1 4 −7 2b− 3

0 7 a− 8 b− 4

0 −14 22 −5b+ 9

 r3+2r2−→

 1 4 −7 2b− 3

0 7 a− 8 b− 4

0 0 2a+ 6 −3b+ 1

 .
Discussion:

1) if a 6= −3, then r(A) = r(A|B) = 3 = n and the system has a unique solution,

2) if a = −3 and b = 1
3
, then r(A) = r(A|B) = 2 < 3 = n and the system has infinitely

many solutions with 1 parameters,

3) if a = −3 and b 6= 1
3
, then r(A) = 2 6= r(A|B) = 3 and the system has no solution.
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4. Polynomials

Let P means the sets Z, Q, R or C. We denote by P[x] the set of all polynomials of the

form

p(x) = pnx
n + pn−1x

n−1 + . . .+ p1x+ p0,

where n ∈ N ∪ {0} and p0, p1, . . . , pn ∈ P. So P[x] denotes the set of all polynomials

in variable x ∈ R (or C) and with coefficients in P. If P = R, then p is called a real

polynomial, and if P = C, then we call p a complex polynomial. If pn 6= 0, then n is called

the degree of a polynomial p(x), written n = deg(p(x)).

Remark. We define deg(0) = −∞, where 0 represents the constant zero polynomial

0(x) = 0 for all x.

Definition. Let p(x), q(x) ∈ P[x]. Operations of polynomial addition and polynomial

multiplication are defined as follows

(p+ q)(x) =
df
p(x) + q(x),

(p · q)(x) =
df
p(x) · q(x).

Polynomial equations:

1. An equation of the type

ax+ b = 0,

where a, b ∈ P and a 6= 0, is called a linear equation and has unique solution

x = − b
a
.

2. An equation of the type

ax2 + bx+ c = 0,

where a, b, c ∈ P and a 6= 0, is called a quadratic equation. To solve such equation we

observe first of all that

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)
= a

(
x2 + 2

b

2a
x+

(
b

2a

)2

+
c

a
− b2

4a2

)

= a

((
x+

b

2a

)2

− b2 − 4ac

4a2

)
= 0



43

precisely when (
x+

b

2a

)2

=
b2 − 4ac

4a2
.(∗)

Let P = R, so we consider quadratic equations with real coefficients. There are three

cases.

(1) If b2 − 4ac > 0, then (∗) becomes

x+
b

2a
= ±
√
b2 − 4ac

2a
,

so that

x =
−b±

√
b2 − 4ac

2a
.

We therefore have two distinct real solutions in this case.

(2) If b2 − 4ac = 0, then (∗) becomes

x+
b

2a
= 0,

so that

x = − b

2a
.

Now we have one solution which occurs twice.

(3) If b2− 4ac < 0, then the right hand side of (∗) is negative. It follows that (∗) is never

satisfied for a real number x, so that the quadratic equation has no real solution.

Let P = C. So we consider quadratic equations with complex coefficients:

az2 + bz + c = 0,

where a 6= 0 and ∆ = b2 − 4ac = u+ vi for some u, v ∈ R. Again we have(
z +

b

2a

)2

=
∆

4a2
.

Now there are two cases.

(1) If ∆ = 0, then
(
z + b

2a

)2
= 0, so

z = − b

2a
.

(2) If ∆ 6= 0, then we have (
z +

b

2a

)2

=
∆

4a2
,
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so (2az + b)2 = ∆. Setting t = 2az + b, the equation is reduced to

t2 = ∆ = u+ vi.

Now, we solve this equation. Put t = x+ yi, where x, y ∈ R. Then

(x+ yi)2 = u+ vi,

(x2 − y2) + 2xyi = u+ vi,{
x2 − y2 = u,

2xy = v.

Solving that system we get x =
√
|∆|+u

2
,

y = sgn(v) ·
√
|∆|−u

2

or

 x = −
√
|∆|+u

2
,

y = −sgn(v) ·
√
|∆|−u

2
,

where

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Thus,

t1 =

√
|∆|+ u

2
+ sgn(v) ·

√
|∆| − u

2
i and t2 = −t1.

Now, since t = 2az + b, we get

z =
1

2a
(−b+ t),

that is, the quadratic equation has two solutions:

z1 =
1

2a
(−b+ t1) and z2 =

1

2a
(−b+ t2).

Example. We solve in C the following quadratic equation:

z2 + 3z + 3 + i = 0.

For that equation: a = 1, b = 3, c = 3 + i, ∆ = b2−4ac = 9−4(3 + i) = −3−4i = u+ vi,

whence u = −3, v = −4 and |∆| = 5. Thus,

t1 =

√
|∆|+ u

2
+ sgn(v) ·

√
|∆| − u

2
i =

√
5− 3

2
−
√

5 + 3

2
i = 1− 2i,

t2 = −t1 = −1 + 2i
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and

z1 =
1

2a
(−b+ t1) =

1

2
(−3 + 1− 2i) = −1− i and

z2 =
1

2a
(−b+ t2) =

1

2
(−3− 1 + 2i) = −2 + i.

Remark. For polynomials equations of degree greater than 2 we do not have general

formulas for solutions.

Theorem. Let a(x), b(x) ∈ P[x] and a(x) 6= 0. Then

b(x) = a(x)q(x) + r(x)

for unique q(x), r(x) ∈ P[x], where either r(x) = 0 or deg(r(x)) < deg(a(x)).

Proof. Consider all polynomials of the form

b(x)− a(x)Q(x),

where Q(x) ∈ P[x]. If there exists q(x) ∈ P[x] such that b(x) − a(x)q(x) = 0, then our

proof is complete. Suppose now that b(x) − a(x)Q(x) 6= 0 for any Q(x) ∈ P[x]. Then

among all polynomials of the form b(x) − a(x)Q(x), where Q(x) ∈ P[x], there must be

one with smallest degree. More precisely, there exists

m = min
{

deg(b(x)− a(x)Q(x)) : Q(x) ∈ P[x]
}
.

Let q(x) ∈ P[x] satisfies deg(b(x) − a(x)q(x)) = m and let r(x) = b(x) − a(x)q(x).

Then m = deg(r(x)) < deg(a(x)) = n. Indeed, assume that m ≥ n. Then writing

a(x) = anx
n + . . .+ a1x+ a0 and r(x) = rmx

m + . . .+ r1x+ r0 we have

r(x)−
(
rma

−1
n xm−n

)
a(x) = b(x)− a(x)q(x)−

(
rma

−1
n xm−n

)
a(x)

= b(x)− a(x)
(
q(x) + rma

−1
n xm−n

)
∈ P[x]

and deg
(
r(x)−

(
rma

−1
n xm−n

)
a(x)

)
< deg(r(x)). This contradicts the minimality of m.

It suffices to prove that q(x), r(x) ∈ P[x] are unique. Suppose that q1(x), q2(x) ∈ P[x]

satisfy deg(b(x) − a(x)q1(x)) = m and deg(b(x) − a(x)q2(x)) = m. Let r1(x) = b(x) −
a(x)q1(x) and r2(x) = b(x) − a(x)q2(x). Hence r1(x) − r2(x) = a(x)(q2(x) − q1(x)). If

q1(x) 6= q2(x), then

deg(a(x)(q2(x)− q1(x))) ≥ deg(a(x)),

while

deg(r1(x)− r2(x)) < deg(a(x)),

and we get a contradiction. It follows that q(x), and hence r(x), are both unique. �
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Definition. A number α ∈ P is called a root of a polynomial p(x) ∈ P[x] if

p(α) = 0.

Theorem. Let b(x) ∈ P[x] and α ∈ P. Then there exists a unique polynomial q(x) ∈ P[x]

such that

b(x) = (x− α)q(x) + b(α).

Proof. There exist unique polynomials q(x), r(x) ∈ P[x] such that

b(x) = (x− α)q(x) + r(x),

where either r(x) = 0 or deg(r(x)) = 0. Hence, r(x) is a constant polynomial, so that

b(x) = (x− α)q(x) + r,

where r ∈ P. Substituting x = α, we get r = b(α). �

Definition. Let a(x), b(x) ∈ P[x]. We say that a(x) is a factor of b(x), denoted by

a(x)|b(x), if there exists c(x) ∈ P[x] such that b(x) = a(x)c(x).

Theorem. Let b(x) ∈ P[x]. Then α ∈ P is a root of b(x) if and only if x− α is a factor

of b(x).

Proof. By previous Theorem there exists a unique polynomial q(x) ∈ P[x] such that

b(x) = (x− α)q(x) + b(α).

If α ∈ P is a root of b(x), then b(α) = 0, so that b(x) = (x − α)q(x), whence x − α is a

factor of b(x).

Conversely, assume that x − α is a factor of b(x). Then, by the above equality there

must be b(α) = 0. Hence α is a root of b(x). �

Theorem. (Integer roots of a polynomial) Let p(x) = pnx
n + pn−1x

n−1 + . . .+ p1x+

p0 ∈ Z[x] and let α ∈ Z\{0} be a root of p. Then α is a divisor of p0.

Proof. We have

pnα
n + pn−1α

n−1 + . . .+ p1α + p0 = 0,

that is,

p0 = −α
(
pnα

n−1 + pn−1α
n−2 + . . .+ p1

)
.

This means that α is a divisor of p0. �

Theorem. (Rational roots of a polynomial) Let p(x) = pnx
n+pn−1x

n−1 + . . .+p1x+

p0 ∈ Z[x], where pn 6= 0, let α
β

be a root of p, where α ∈ Z and β ∈ Z\{0}, and let the

greatest common divisor of α and β be 1. Then α is a divisor of p0 and β is a divisor of

pn.



47

Proof. We have

pn

(
α

β

)n
+ pn−1

(
α

β

)n−1

+ . . .+ p1
α

β
+ p0 = 0.

Hence,

pnα
n + pn−1α

n−1β + . . .+ p1αβ
n−1 + p0β

n = 0,

Let

m = pnα
n−1 + pn−1α

n−2β + . . .+ p1β
n−1 and m′ = pn−1α

n−1 + pn−2α
n−2β + . . .+ p0β

n−1.

Then m,m′ ∈ Z and αm+ p0β
n = 0 and pnα

n + βm′ = 0. So,

αm = −p0β
n and βm′ = −pnαn.

Hence, α is a divisor of p0β
n and is not a divisor of βn, that is, α is a divisor of p0.

Similarly, β is a divisor of pnα
n and is not a divisor of αn, that is, β is a divisor of pn. �

Theorem. (Fundamental theorem of algebra) Every polynomial p(z) ∈ C[z] with

deg(p(z)) = n has precisely n roots. If p(z) = pnz
n + . . . + p1z + p0, then there exist

α1, . . . , αn ∈ C, not necessarily distinct, such that

p(z) = pn(z − α1) · · · (z − αn).

(without proof)

Theorem. (Viete’s formulas) Let p(z) = pnz
n + pn−1z

n−1 + . . .+ p1z + p0 ∈ C[z] and

deg(p(z)) = n. Then numbers z1, z2, . . . , zn ∈ C are roots of p if and only if



z1 + z2 + . . .+ zn = −pn−1

pn
,

z1z2 + z1z3 + . . .+ zn−1zn = pn−2

pn
,

z1z2z3 + z1z2z4 + . . .+ zn−2zn−1zn = −pn−3

pn
,

...

z1z2 · · · zn−1zn = (−1)n · p0
pn
.

(without proof)

Remark. If p(z) = az2 + bz + c ∈ C[z], then numbers z1, z2 ∈ C are roots of p if and

only if

{
z1 + z2 = − b

a
,

z1z2 = c
a
.

Theorem. Let p(x) ∈ R[x] and let α ∈ C be a root of p(x). Then α is also a root of

p(x).
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Proof. We have p(x) = pnx
n + . . . + p1x + p0, where p0, . . . , pn ∈ R. Since α ∈ C is a

root of p(x), we must have p(α) = 0. Hence,

0 = p(α) = pnαn + . . .+ p1α + p0 = pn α
n + . . .+ p1 α + p0 = pnα

n + . . .+ p1α + p0 = p(α).

Thus α is a root of p(x). �

Theorem. Every polynomial p(x) ∈ R[x] of odd degree has a root in R.

Proof. Consider p(x) as a polynomial in C[x]. Then all roots are given by Fundamental

theorem of algebra. Suppose on the contrary that none of these is real. Then, by previous

Theorem, roots occur as conjugate pairs. It follows that there must be an even number

of roots. This contradicts Fundamental theorem of algebra. �
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