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Preliminaries

The teaching script is a record of lectures of the course Linear algebra, which author

have on KUL for informatics students. The course covers 15 hours, which means that there

is not time for many interesting topics. First there is Cartesian space Rn and vectors in

it discussed, and next there are presented subsets of R2 and R3 such as lines, planes

and conics. Discussed notions are given in understanding form and often illustrated by

examples. Author hopes that teaching script will by helpfull for student.
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1. Cartesian space Rn

Cartesian coordinates on the line:

-
o

r
x1

p = (x1)

On the line we choose an arbitrary point o as the origin. It divides the line into two

halflines. Regarding one of them as the positive halfline and the other as negative halfline,

we obtain the axis. To any point p we assign a number x1 called its Cartesian coordinate.

In that way we get the Cartesian space R1. In that space we have the following formula

of the distance of two points x, y ∈ R1:

ρ(x, y) = |x− y| .

Cartesian coordinates on the plane:

-

6

r
o

p = (x1, x2)

x1

x2

On the plane let us consider two lines intersecting at a point o as the origin and on each

of them let us fix Cartesian coordinates. We obtain the axes, which form the Carte-

sian system of coordinates. We write p = (x1, x2) and numbers x1, x2 we call Cartesian

coordinates of the point p.

If axes are perpendicular, then the Cartesian coordinates are called rectangular. In that

way we get the Cartesian space R2. In that space we have the following formula of the

distance of two points x = (x1, x2), y = (y1, y2) ∈ R2:

ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.
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Cartesian coordinates in the space:

-

6

�
�

�
�

�
�
�
�	

o

r
x1

x2

x3

p = (x1, x2, x3)

In the space let us take three lines not lying in one plane and passing through one point

o as the origin, and on each of them let us fix Cartesian coordinates. We obtain the axes,

which form the Cartesian system of coordinates. We write p = (x1, x2, x3) and numbers

x1, x2, x3 we call Cartesian coordinates of the point p.

If each axis is perpendicular to both the remaining ones, then the system is called rectan-

gular. In that way we get the Cartesian space R3. In that space we have the following

formula of the distance of two points x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3:

ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Definition. (Metric space) Let X be a set and ρ : X ×X → [0,∞) be a function. A

metric space is a pair (X, ρ) such that

1)
∧

x,y∈X
ρ(x, y) = ρ(y, x),

2)
∧

x,y∈X
ρ(x, y) = 0 ⇔ x = y,

3)
∧

x,y,z∈X
ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Elements of X are called points, ρ is called a metrics and ρ(x, y) is a distance of points

x, y.

Definition. (n-dimensional Cartesian space) An n-dimensional Cartesian space is

the set

Rn = {(x1, . . . , xn) : xi ∈ R}
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together with a metrics ρ : Rn × Rn → [0,∞) given by formula

ρ((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2.

Thus (Rn, ρ) is a metric space.

Exercise. Show that a function ρ defined above is a metrics.

Definition. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and t ∈ R. Define

x+ y =
df

(x1 + y1, . . . , xn + yn) − an addition of points x, y,

−x =
df

(−x1, . . . ,−xn)

x− y =
df
x+ (−y) − a subtraction of points x, y,

tx =
df

(tx1, . . . , txn) − a multiplication of a point x by a number t,

x · y =
df

n∑
i=1

xiyi − a scalar multiplication of points x, y,

x1 = x, xk+1 =
df
xk · x − a power of a point x,

0 =
df

(0, . . . , 0).

Theorem. Let x, y, z ∈ Rn and t ∈ R. Then

1) x+ y = y + x,

2) (x+ y) + z = x+ (y + z),

3) t(x+ y) = tx+ ty,

4) tx = 0⇔ t = 0 ∨ x = 0,

5) x · y = y · x,

6) ∼ (x · y) · z = x · (y · z),

7) (tx) · y = t(x · y),

8) x · (y + z) = x · y + x · z,

9) (tx)k = tkxk,

10) ∼ (x · y)k = xk · yk,
11) (x · y)2 ≤ x2 · y2 – Cauchy-Schwarz inequality.

Proof. Easy. �

Definition. Let x = (x1, . . . , xn) ∈ Rn. A modulus of a point x is a number:

|x| =
df
ρ(x, 0) =

√√√√ n∑
i=1

x2i

(it is the distance of a point x and point 0).
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Theorem. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and t ∈ R. Then

1) x2 = |x|2 =
∑n

i=1 x
2
i ,

2) ρ(x, y) = |x− y| =
√

(x− y)2,

3) |x| ≥ 0,

4) |x| = |−x|,
5) |x| = 0⇔ x = 0,

6) |tx| = |t| |x|,
7) |x · y| ≤ |x| · |y|,
8) |x+ y| ≤ |x|+ |y|,
9) |x| − |y| ≤ |x− y|,
10) (x+ y)2 = x2 + 2x · y + y2,

11) (x− y)2 = x2 − 2x · y + y2,

12) x2 − y2 = (x− y) · (x+ y).

Proof. 1) – 5) Easy.

6) |tx| =
√∑n

i=1(txi)
2 =

√
t2
∑n

i=1 x
2
i = |t|

√∑n
i=1 x

2
i = |t| |x|.

7) |x · y| =
√∑n

i=1(xiyi)
2 =

√∑n
i=1 x

2
i y

2
i ≤

√∑n
i=1 x

2
i ·
∑n

i=1 y
2
i =

√∑n
i=1 x

2
i ·
√∑n

i=1 y
2
i =

|x| · |y| (by Cauchy-Schwarz inequality).

8) |x+ y| = |x− (−y)| = ρ(x,−y) ≤ ρ(x, 0) + ρ(0,−y) = ρ(x, 0) + ρ(0, y) = |x|+ |y|.
9) |x| = |y + (x− y)| ≤ |y|+ |x− y|, whence |x| − |y| ≤ |x− y|.
10), 11) and 12) follow from 8) of previous theorem. �

Definition. Let (X, ρ) be a metric space and let a, b ∈ X. A metric segment is a set:

〈a, b〉 =
df
{x ∈ X : ρ(a, x) + ρ(x, b) = ρ(a, b)}.

Definition. Let (X, ρ) be a metric space and let a, b, c ∈ X. Then

c is a centre of a segment 〈a, b〉 ⇔
df

ρ(a, c) = ρ(b, c) =
1

2
ρ(a, b).

Theorem. Let a, b ∈ Rn. Then there exists exactly one centre of a segment 〈a, b〉; it is a

point c = 1
2
(a+ b).

Proof. If a = b, then Theorem is obvious. Let a 6= b. We have

ρ(a, c) = |a− c| =
∣∣∣∣a− 1

2
(a+ b)

∣∣∣∣ =
1

2
|a− b| = 1

2
|b− a| =

∣∣∣∣b− 1

2
(a+ b)

∣∣∣∣ = |b− c| = ρ(b, c).

Hence c is a centre of a segment 〈a, b〉.
Let d = c+ x be also a centre of a segment 〈a, b〉. Then

ρ(a, d) =
1

2
ρ(a, b) =

1

2
|a− b| = |a− d| =

∣∣∣∣a− 1

2
a− 1

2
b− x

∣∣∣∣ =

∣∣∣∣12a− 1

2
b− 1

2
· 2x
∣∣∣∣ =

1

2
|a− b− 2x| ,

that is, |a− b| = |a− b− 2x|.
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Similarly,

ρ(b, d) =
1

2
|a− b| = |d− b| = 1

2
|a− b+ 2x| ,

whence |a− b| = |a− b+ 2x|.
Thus,

|a− b− 2x|2 = |a− b+ 2x|2 ,

that is,

(a− b)2 − 4x(a− b) + 4x2 = (a− b)2 + 4x(a− b) + 4x2,

whence

x(a− b) = 0.

Now, a− b 6= 0 (since a 6= b), so x = 0.

Thus, d = c. �

Definition. Let A ⊆ Rn. Then

A is convex ⇔
df

∧
a,b∈A

〈a, b〉 ⊆ A.

Conclusion. A segment in Rn is a convex set.
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2. Vectors in space Rn

Definition. A localized vector in Rn =
df

an ordered pair of points in Rn.

Denotation:
−→
ab for a, b ∈ Rn, a – the initial point of

−→
ab , b – the end-point of

−→
ab .

Definition. Coordinates of a localized vector
−→
ab =

df
coordinates of a point b− a.

If a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, then
−→
ab = [b1 − a1, . . . , bn − an].

Definition. Let a, b, a′, b′ ∈ Rn. Then

−→
ab =

−→
a′b′ ⇔

df

−→
ab and

−→
a′b′ have the same coordinates ⇔

df
b− a = b′ − a′

⇔ a′ + b = a+ b′ ⇔ 1

2
(a′ + b) =

1

2
(a+ b′)

�
�
�
���

�
�
�
���r

a

b

a′

b′

(two localized vectors
−→
ab and

−→
a′b′ are equal iff the centres of 〈a′, b〉 and 〈a, b′〉 coinicide).

Theorem. The relation of equality of localized vectors is an equivalence relation.

Proof. Easy. �

Definition. A free vector (vector) in Rn =
df

an equivalence class of the relation of equality

of localized vectors,

that is, [−→
ab
]

=
{−→
cd :

−→
ab =

−→
cd
}
− a free vector with a representative

−→
ab.

Denotation: a, b, c, . . . (small gothic letters).

Remark. All representatives of a free vector have the same coordinates.

Definition. Coordinates of a free vector =
df

coordinates of its representative.

Definition. Let a, a, b ∈ Rn and
−→
ab ∈ a. Then a length of a vector a is a number:

|a| =
df
ρ(a, b).

If a = [α1, . . . , αn], then |a| =
√∑n

i=1 α
2
i .

Definition. A versor =
df

a vector of length 1.
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Theorem. (On localization of a free vector at a point) Every free vector in Rn can

be uniquely localized at an arbitrary point a ∈ Rn.

Proof. Take a, a ∈ Rn. We search a point b ∈ Rn such that
−→
ab ∈ a. Let

−→
cd ∈ a. Then

−→
ab =

−→
cd ⇔ b− a = d− c⇔ b = d− c+ a. �

Theorem. For every free vector a ∈ Rn and every point b ∈ Rn there exists a unique

representative of a with the end-point b.

Proof. Similar (we calculate a). �

Definition. Let a = [α1, . . . , αn], b = [β1, . . . , βn] ∈ Rn and t ∈ R. Define

a + b =
df

[α1 + β1, . . . , αn + βn] − an addition of vectors a, b,

−a =
df

[−α1, . . . ,−αn] − an opposite vector for a,

a− b =
df

[α1 − β1, . . . , αn − βn] − a subtraction of vectors a, b,

ta =
df

[tα1, . . . , tαn] − a multiplication of a vector a by a number t,

a · b =
df

n∑
i=1

αiβi − a scalar product of vectors a, b.

Remark. We will write a · a = a2.

Theorem. Let a, b, c ∈ Rn and t ∈ R. Then

1) a · b = b · a,

2) (ta) · b = t(a · b),

3) a2 = |a|2,
4) a · (b + c) = a · b + a · c,
5) − |a| |b| ≤ a · b ≤ |a| |b|.

Proof. Easy. Point 5) follows from Cauchy-Schwartz inequality. �

Theorem. Let a, b, c, a, b, c ∈ Rn. Then

−→
ab ∈ a ∧

−→
bc ∈ b ⇒ −→

ac ∈ [a + b].

Proof. Easy. �

Definition. Let a, b ∈ Rn. Then

a, b are equally parallel, a �� b ⇔
df
|a|+ |b| = |a + b|
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�
�
�
���

�
�
�
�
�
��

a b

a, b are oppositely parallel, a �� b ⇔
df
|a|+ |b| = |a− b|

�
�
�
��� �

�
�
�

�
�
��	

a

b

a, b are parallel, a ‖ b ⇔
df

a �� b ∨ a �� b

Theorem. Let a, b ∈ Rn be such that a 6= 0 6= b. Then

a ‖ b ⇔
∨
t6=0

b = ta

and t > 0 ⇒ a �� b,

t < 0 ⇒ a �� b.

Proof. Easy. �

Theorem. In the set of nonzero vectors in Rn relations ‖ and �� are equivalence relations.

Proof. Easy. �

Definition. Let a ∈ Rn.

A direction of a vector a =
df

an equivalence class of the relation ‖ with a representative a,

that is,

K(a) = {b : b ‖ a ∧ b 6= 0}.

A sense of a vector a =
df

an equivalence class of the relation �� with a representative a,

that is,

Z(a) = {b : b �� a ∧ b 6= 0}.

We have: Z(a) ⊆ K(a).

Remark. Let a, b ∈ Rn be such that a 6= 0 6= b. Since − |a| |b| ≤ a · b ≤ |a| |b|, it follows

that there is a unique number θ such that

a · b = |a| |b| cos θ and 0 ≤ θ ≤ π.
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If a = 0 or b = 0, then θ is arbitrary such that 0 ≤ θ ≤ π.

Definition. Let a, b ∈ Rn. A number ^(a, b) ∈ [0, π] such that

cos(^(a, b)) =
a · b
|a| |b|

is called an angle in Rn between vectors a, b.

Theorem. Let a, b ∈ Rn. Then

1) ^(a, b) = ^(b, a),

2) t, s > 0 ⇒ ^(a, b) = ^(ta, sb),

3) ^(a, b) + ^(−a, b) = π,

4) ^(a, b) = ^(−a,−b).

Proof. Easy. �

Definition. Let a, b ∈ Rn. Then

a, b are perpendicular, a⊥b ⇔
df
^(a, b) =

π

2
∨ a = 0 ∨ b = 0.

Theorem. Let a, b ∈ Rn. Then

a⊥b ⇔ a · b = 0.

Proof. Follows immediately from the formula a · b = |a| |b| cos(^(a, b)). �

Definition. (Vector product in R3) Let a, b ∈ R3, a = [α1, α2, α3] and b = [β1, β2, β3].

A vector product of a and b is a vector

a× b =
df

[∣∣∣∣∣ α2 α3

β2 β3

∣∣∣∣∣ ,−
∣∣∣∣∣ α1 α3

β1 β3

∣∣∣∣∣ ,
∣∣∣∣∣ α1 α2

β1 β2

∣∣∣∣∣
]
.

Remark. If we denote by i, j, k versors of coordinate axes in R3, that is, i = [1, 0, 0],

j = [0, 1, 0] and k = [0, 0, 1], then

a× b =

∣∣∣∣∣∣∣
i j k

α1 α2 α3

β1 β2 β3

∣∣∣∣∣∣∣ .
Example. Determine a× b if a = [1, 1,−1] and b = [2,−1, 3].

Solution.

a× b =

∣∣∣∣∣∣∣
i j k

1 1 −1

2 −1 3

∣∣∣∣∣∣∣ =

[∣∣∣∣∣ 1 −1

−1 3

∣∣∣∣∣ ,−
∣∣∣∣∣ 1 −1

2 3

∣∣∣∣∣ ,
∣∣∣∣∣ 1 1

2 −1

∣∣∣∣∣
]

= [2,−5,−3].
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Theorem. Let a, b, c ∈ R3. Then

1) a× a = 0,

2) a× b = −b× a,

3) a× (b + c) = a× b + a× c and (a + b)× c = a× c + b× c,

4) t · (a× b) = (t · a)× b = a× (t · b), where t ∈ R,

5) (a× b) · c =

∣∣∣∣∣∣∣
α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

∣∣∣∣∣∣∣, where a = [α1, α2, α3], b = [β1, β2, β3], c = [γ1, γ2, γ3],

6) a× b = 0⇔ a ‖ b,

7) a× b⊥a and a× b⊥b,

8) |a× b| = |a| |b| sin^(a, b).

Proof. Points 1) – 5) follow from above Remark and definition.

6) We have

a ‖ b ⇔
∨
t6=0

b = ta ⇔
∨
t6=0

(ta)× b = b× b = 0 ⇔
∨
t6=0

t(a× b) = 0 ⇔ a× b = 0.

7) Follows from 5).

8) We have for a = [α1, α2, α3] and b = [β1, β2, β3]:

|a× b|2 = (α2β3 − α3β2)
2 + (α1β3 − α3β1)

2 + (α1β2 − α2β1)
2

= (α2
1 + α2

2 + α2
3)(β

2
1 + β2

2 + β2
3)− (α1β1 + α2β2 + α3β3)

2

= a2b2 − (a · b)2

= (|a| |b|)2 − (|a| |b|)2 cos2^(a, b)

= (|a| |b| sin^(a, b))2,

whence |a× b| = |a| |b| sin^(a, b). �

Theorem. Let a, b, c ∈ R3, 4(a, b, c) be a triangle with vertices a, b, c, a =
[−→
ab
]

and

b =
[
−→
ac
]
. Then

|4(a, b, c)| = 1

2
|a× b|

(the area of a triangle).

�
�
�
�
��

-@
@

@
@
@

a b

c

a

b

Proof. We have the following Heron’s formula

|4(a, b, c)| = 1

4

√
s[s− 2ρ(b, c)][s− 2ρ(a, c)][s− 2ρ(a, b)],
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where s = ρ(a, b) + ρ(a, c) + ρ(b, c).

Hence

|4(a, b, c)| = 1

4

√
(|a|+ |b|+ |a− b|)(|a|+ |b| − |a− b|)(|a| − |b|+ |a− b|)(− |a|+ |b|+ |a− b|)

=
1

2

√
(|a| |b|+ a · b)(|a| |b| − a · b)

=
1

2

√
a2b2 − (a · b)2

=
1

2
|a| |b| sin^(a, b).

Thus |4(a, b, c)| = 1
2
|a× b|. �

Conclusion. The number |a× b| is the area of a parallelogram built on vectors a, b ∈ R3:

�
�
�
�
��

-�
�
�
�
�

a

b
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3. Transformations of metric spaces

Definition. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be a function. Then

f is an isometry ⇔
df

1) f : X
onto−→ Y,

2)
∧

x,x′∈X

ρ(f(x), f(x′)) = ρ(x, x′).

Examples.

1. Translation: a ∈ Rn, f : Rn → Rn, f(x) = x + a for x ∈ Rn. Then f is an isometry,

since

ρ(f(x), f(x′)) =
√

(f(x)− f(x′))2 =
√

[(x+ a)− (x′ + a)]2 =
√

(x− x′)2 = ρ(x, x′)

for x, x′ ∈ Rn.

2. Rotation of the plane R2: α ∈ R, x = (x1, x2) ∈ R2, f : R2 → R2

f(x) = (x1 cosα− x2 sinα, x1 sinα + x2 cosα) – rotation through the angle α

Then f is an isometry, since

ρ(f(x), f(x′))2 = [(x1 − x′1) cosα− (x2 − x′2) sinα]2 + [(x1 − x′1) sinα + (x2 − x′2) cosα]2

= (x1 − x′1)2 + (x2 − x′2)2

= ρ(x, x′)2

for x = (x1, x2), x
′ = (x′1, x

′
2) ∈ R2.

Theorem. An isometry is a one-to-one transformation.

Proof. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be an isometry. Take x, x′ ∈ X.

Assume that f(x) = f(x′). Then

0 = ρ(f(x), f(x′)) = ρ(x, x′) ⇒ x = x′. �

Theorem. If f : X → Y is an isometry, then f−1 : Y → X is an isometry.

Proof. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be an isometry. Obviously,

f−1 is onto (because f is onto). Let y, y′ ∈ Y . There are x, x′ ∈ X such that f−1(y) = x

and f−1(y′) = x′. Hence y = f(x) and y′ = f(x′). We have

ρ(f−1(y), f−1(y′)) = ρ(x, x′) = ρ(f(x), f(x′)) = ρ(y, y′). �

Theorem. Composition of two isometries is an isometry.
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Proof. Let (X, ρ), (Y, ρ), (Z, ρ̂) be metric spaces and f : X → Y , g : Y → Z be

isometries. So ∧
x,x′∈X

ρ(f(x), f(x′)) = ρ(x, x′)

and ∧
y,y′∈Y

ρ̂(g(y), g(y′)) = ρ(y, y′).

Then gf : X → Z and∧
x,x′∈X

ρ̂(gf(x), gf(x′)) = ρ(f(x), f(x′)) = ρ(x, x′). �

Definition. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be a function. Then

f is a similarity ⇔
df

1) f : X
onto−→ Y,

2)
∨
λ>0

∧
x,x′∈X

ρ(f(x), f(x′) = λρ(x, x′).

Number λ is then called the ratio of similarity f .

Remark. Any isometry is a similarity with the ratio 1.

Example. Homothety with the ratio c > 0: jc : Rn → Rn, jc(x) = cx for x ∈ Rn. Then

jc is a similarity with the ratio c, since

ρ(jc(x), jc(x
′)) =

√
(jc(x)− jc(x′))2 =

√
(cx− cx′)2 = c

√
(x− x′)2 = cρ(x, x′)

for x, x′ ∈ Rn.

Theorem. A similarity is a one-to-one transformation.

Proof. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be a similarity with the ratio

λ > 0. Let x, x′ ∈ X and f(x) = f(x′). Then

0 = ρ(f(x), f(x′)) = λρ(x, x′)

and

λ > 0 ⇒ ρ(x, x′) = 0 ⇒ x = x′. �

Theorem. If f : X → Y is a similarity with the ratio λ > 0, then f−1 : Y → X is a

similarity with the ratio 1
λ
.

Proof. Let (X, ρ), (Y, ρ) be metric spaces and f : X → Y be a similarity with the ratio

λ > 0. Obviously, f−1 is onto (because f is onto). Let y, y′ ∈ Y . There are x, x′ ∈ X
such that f−1(y) = x and f−1(y′) = x′. Hence y = f(x) and y′ = f(x′). We have

ρ(f−1(y), f−1(y′)) = ρ(x, x′) =
1

λ
ρ(f(x), f(x′)) =

1

λ
ρ(y, y′).

Thus f−1 is a similarity with the ratio 1
λ
. �
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Theorem. Composition of two similarities is a similarity.

Proof. Let (X, ρ), (Y, ρ), (Z, ρ̂) be metric spaces. Let f : X → Y be a similarity with

the ratio λ1, g : Y → Z be a similarity with the ratio λ2. We will show that gf : X → Z

is a similarity with the ratio λ1λ2. Let x, x′ ∈ X and y, y′ ∈ Y . We know that

ρ(f(x), f(x′)) = λ1ρ(x, x′)

and

ρ̂(g(y), g(y′)) = λ2ρ(y, y′).

We have

ρ̂(gf(x), gf(x′)) = λ2ρ(f(x), f(x′)) = λ1λ2ρ(x, x′). �

Definition. Let (X, ρ), (Y, ρ) be metric spaces. Then

X and Y are isometric ⇔
df

there exists an isometry f : X → Y .

X and Y are similar ⇔
df

there exists a similarity g : X → Y .

Remark. If X, Y are isometric, then they are similar. The converse is not true.
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4. Lines, planes and hyperplanes in space Rn

Definition. Let (X, ρ) be a metric space and Y ⊆ X. Then

(Y, ρ|Y × Y ) =
df

a subspace of a metric space (X, ρ).

Definition.

A line =
df

a subspace of the space Rn isometric with R1.

Remark. Let L ⊆ Rn. Then

L is a line ⇔ L is isometric with R1 ⇔ there exists an isometry f : R1 → L ⇔ there

exists an isometry g : L→ R1.

Remark. In R1 there exists a unique line. It is R1.

Theorem. (On a line) Through every two distinct points a, b ∈ Rn there passes exactly

one line. It is the set {x(t) = (1− t)a+ tb : t ∈ R} = L(a, b), where x : R→ Rn is called

the parametric presentation of a line L(a, b).

Proof. Take f : R1 → L(a, b) such that f(t) = x
(

t
ρ(a,b)

)
, t ∈ R. We have for t, t′ ∈ R:

ρ(f(t), f(t′))2 =

[(
1− t

ρ(a, b)

)
a+

t

ρ(a, b)
b−

(
1− t′

ρ(a, b)

)
a− t′

ρ(a, b)
b

]2
=

[
(t− t′)a− (t− t′)b

ρ(a, b)

]2
= (t− t′)2

= ρ(t, t′)2.

Hence f is an isometry, that is, L(a, b) is a line. Moreover, x(0) = a and x(1) = b whence

a, b ∈ L(a, b).

Now we show that L(a, b) is unique. Assume that there is a line K such that a, b ∈ K.

We show that K ⊆ L(a, b). Take an isometry g : R1 → K. There are α, β ∈ R such that

g(α) = a, g(β) = b and α < β. Take c = g(γ) ∈ K such that a 6= c 6= b. Suppose that

α < β < γ. Then |β − α|+ |γ − β| = |γ − α|. Hence ρ(b, a) + ρ(c, b) = ρ(c, a), because g

is an isometry. It follows ∣∣∣−→ab ∣∣∣+
∣∣∣−→bc ∣∣∣ =

∣∣∣−→ac ∣∣∣ =
∣∣∣−→ab +

−→
bc
∣∣∣ ,

so
−→
ab ‖ −→ac . Thus there exists t 6= 0 such that c− a = t(b− a), whence c = (1− t)a+ tb =

x(t) ∈ L(a, b).

Similarly when α < γ < β and γ < α < β. Hence K ⊆ L(a, b). Precisely, K =

L(a, b). �
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Remark. We will write the following parametric equation of L(a, b):

L = L(a, b) : x(t) = (1− t)a+ tb, t ∈ R.

Definition. Let a, a, b ∈ Rn and let L ⊆ Rn be a line. Then

−→
ab lies on L ⇔

df
a, b ∈ L.

a ‖ L ⇔
df

∨
−→
ab

−→
ab ∈ a ∧

−→
ab lies on L ⇔

∨
a,b∈L

−→
ab ∈ a.

Definition. Let a ∈ Rn and let L ⊆ Rn be a line.

A direction of a line L =
df

a direction of a vector a ‖ L.

A direction vector of a line L =
df

a vector a ‖ L.

Theorem. (The second form of the parametric equation of a line in Rn)

Let a, a ∈ Rn and let L ⊆ Rn be a line. Then

a ∈ L ∧ a ‖ L ∧ a 6= 0 ⇒ L : x(t) = a+ ta, t ∈ R.

Proof. Let a ∈ L, a ‖ L and a 6= 0. By Theorm on localization of a free vector at a

point, a vector a can be localized at a point a. Then there exists a point b ∈ L (because

a ‖ L) such that a =
[−→
ab
]
. By Theorem on a line for t ∈ R:

L : x(t) = (1− t)a+ tb, so

L : x(t) = a+ t(b− a),

L : x(t) = a+ t
[−→
ab
]
,

L : x(t) = a+ ta. �

Remark. If a = (a1, . . . , an) ∈ L and a = [α1, . . . , αn] ‖ L, then a parametric equation

of L : x(t) = a+ ta, t ∈ R has a form:

L : x(t) = (a1 + tα1, . . . , an + tαn), t ∈ R.

For example, L : x(t) = (1 + 2t,−1 + 3t), where t ∈ R, is the line in R2 such that

a = (1,−1) ∈ L and a = [2, 3] ‖ L, and K : y(s) = (−1 + s, 2− s, 3 + 2s), where s ∈ R, is

the line in R3 such that a = (−1, 2, 3) ∈ K and a = [1,−1, 2] ‖ K.

Definition. Let L,K ⊆ Rn be lines, a ‖ L and b ‖ K. Then

L ‖ K ⇔
df

a ‖ b ⇔
∨
t6=0

b = ta.

L⊥K ⇔
df

a⊥b ⇔ a · b = 0.
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Definition. Let a ∈ R2 and let L ⊆ R2 be a line.

A normal direction of a line L =
df

a direction of a vector a⊥L.

A normal vector of a line L =
df

a vector a⊥L.

Theorem. For every point a ∈ R2 and every nonzero vector a = [α1, α2] there exists in

R2 a unique line, which passes through a with a normal vector a. It is consisted of all

points (x1, x2) satisfying the equation

α0 + α1x1 + α2x2 = 0, where α0 = −a · (a).

That is the linear equation of a line L such that a ∈ L and a⊥L.

Proof. Let a = (a1, a2) ∈ L, a = [α1, α2]⊥L and b = (x1, x2) ∈ R2. Then (see the

picture)

b ∈ L⇔
[−→
ab
]
⊥a⇔

[−→
ab
]
· a = 0

⇔ [x1 − a1, x2 − a2] · [α1, α2] = 0

⇔ α1(x1 − a1) + α2(x2 − a2) = 0

⇔ −(a1α1 + a2α2) + α1x1 + α2x2 = 0.

Lr r-
a b

6

a

Setting

α0 = −(a1α1 + a2α2) = −a · (a)

we get

L : α0 + α1x1 + α2x2 = 0.

Obviously, such line is unique. �

Theorem. Let L,K ⊆ R2 be lines, L : α0+α1x1+α2x2 = 0 and K : β0+β1x1+β2x2 = 0.

Then

K = L ⇔
∨
t6=0

βi = tαi for i = 0, 1, 2.

K ‖ L ⇔
∨
t6=0

βi = tαi for i = 1, 2.

Proof. Easy. �

Definition. Let L,K ⊆ R2 be lines and a ∈ R2. Then

ρ(a, L) =
df

ρ(a, b), where b ∈ K ∩ L and a ∈ K⊥L

(a distance of a point a and a line L in R2).
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Theorem. Let L ⊆ R2 be a line, L : α0 + α1x1 + α2x2 = 0 and a = (a1, a2) ∈ R2. Then

ρ(a, L) =
|α0 + α1a1 + α2a2|√

α2
1 + α2

2

.

Proof. Let a = [α1, α2]⊥L and x = (x1, x2) ∈ R2. Then L : α0 + x · (a) = 0. Take a line

K such that K : x(t) = a+ ta. Then b ∈ K ∩ L, that is, b = a+ t′a and α0 + b · (a) = 0,

whence

α0 + (a+ t′a) · (a) = 0

α0 + a · (a) + t′a2 = 0

t′a2 = −α0 − a · (a)

t′ = −α0 + a · (a)

a2
.

Thus b = a− α0+a·(a)
a2

a and

ρ(a, L) = ρ(a, b) = |b− a|

=

∣∣∣∣a− α0 + a · (a)

a2
a− a

∣∣∣∣
=
|α0 + a · (a)|
|a|2

|a|

=
|α0 + α1a1 + α2a2|√

α2
1 + α2

2

. �

Definition. An equation α0 + α1x1 + α2x2 = 0 of a line L in R2 is called normalized if

a = [α1, α2] is a versor (so |a| = 1).

Conclusion. If α0 + α1x1 + α2x2 = 0 is a normalized equation of a line L in R2 and

a = (a1, a2) ∈ R2, then

ρ(a, L) = |α0 + α1a1 + α2a2| .

Theorem. Every line in R2 has a normalized equation.

Proof. Easy. �

Theorem. Let L(a, b) ⊆ R2 be a line, a = (a1, a2), b = (b1, b2) ∈ R2 and a 6= b. Then

L(a, b) :

∣∣∣∣∣∣∣
1 a1 a2

1 b1 b2

1 x1 x2

∣∣∣∣∣∣∣ = 0.

Proof. We have
[−→
ab
]

= [b1 − a1, b2 − a2] ‖ L(a, b). It is easy to see that

[b1 − a1, b2 − a2] · [−(b2 − a2), b1 − a1] = 0,
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whence

[−(b2 − a2), b1 − a1]⊥L(a, b)

so

L(a, b) : −(a1, a2) · (−(b2 − a2), b1 − a1)− (b2 − a2)x1 + (b1 − a1)x2 = 0.

Hence

L(a, b) : (a2x1 + b1x2 + a1b2)− (b2x1 + a1x2 + a2b1) = 0,

that is,

L(a, b) :

∣∣∣∣∣∣∣
1 a1 a2

1 b1 b2

1 x1 x2

∣∣∣∣∣∣∣ = 0. �

Remark. Niech L,K be lines in R2. Then

L ‖ K ⇒ L = K ∨ L ∩K = ∅,

L ∦ K ⇒ L ∩K is a point.

Definition.

A proper pencil of lines in R2 =
df

the set of all lines which pass through one point
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An improper pencil of lines in R2 =
df

the set of all lines with the same direction
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Remark. Every two different lines in R2 determine a pencil (proper or improper). We

use the following denotation:

P(L,K) = a pencil of lines in R2 determined by lines L,K.

Theorem. (On a pencil of lines in R2) Let L : α0 +α1x1 +α2x2 = 0, K : β0 + β1x1 +

β2x2 = 0 and L 6= K. Then

M ∈ P(L,K)⇔
∨

η,λ∈R, η2+λ2>0

M : η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0.
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Proof. First, note that if η2 + λ2 > 0, then an equation

η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0

is a linear equation of some line in R2. Indeed, we have [α1, α2] 6= 0 6= [β1, β2], whence

[ηα1 + λβ1, ηα2 + λβ2] = η[α1, α2] + λ[β1, β2] 6= 0.

(⇒) Let M ∈ P(L,K), a = (a1, a2) ∈ M and a /∈ L ∪ K. It suffices to set: η =

β0 + β1a1 + β2a2 and λ = −(α0 + α1a1 + α2a2).

(⇐) Assume that∨
η,λ∈R, η2+λ2>0

M : η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0.

We have two cases:

1) P(L,K) is proper.

Then an intersection point of lines L and K satisfies the equation of a line M , that is,

M ∈ P(L,K).

2) P(L,K) is improper.

Then
∨
t6=0

[β1, β2] = t[α1, α2] (they are parallel), whence

[ηα1 + λβ1, ηα2 + λβ2] = η[α1, α2] + λ[β1, β2]

= η[α1, α2] + λt[α1, α2]

= (η + λt)[α1, α2],

that is, M ‖ L ‖ K. �

Remark. Equivalently, we have

M ∈ P(L,K)⇔
∨
λ∈R

M : α0 + α1x1 + α2x2 + λ(β0 + β1x1 + β2x2) = 0

(in this case there does not exist λ such that M = K).

Definition.

Copenciled lines in R2 =
df

lines which belong to one pencil.

Theorem. Let L : α0+α1x1+α2x2 = 0, K : β0+β1x1+β2x2 = 0 andM : γ0+γ1x1+γ2x2 =

0 be distinct lines. Then lines L,K,M are copenciled ⇔∣∣∣∣∣∣∣
α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣ = 0.
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Proof. We have M ∈ P(L,K)⇔ there are η, λ, δ ∈ R, η2 + λ2 > 0 such that
ηα0 + λβ0 = −δγ0,
ηα1 + λβ1 = −δγ1,
ηα2 + λβ2 = −δγ2,

which is equivalent to 
ηα0 + λβ0 + δγ0 = 0,

ηα1 + λβ1 + δγ1 = 0,

ηα2 + λβ2 + δγ2 = 0.

That system has a nonzero solution ⇔∣∣∣∣∣∣∣
α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣ = 0. �

Definition.

A plane =
df

a subspace of the space Rn isometric with R2.

Definition. Let a, b, a, b ∈ Rn and let P ⊆ Rn be a plane. Then
−→
ab lies on P ⇔

df
a, b ∈ P .

a ‖ P ⇔
df

∨
−→
ab

−→
ab ∈ a ∧

−→
ab lies on P ⇔

∨
a,b∈P

−→
ab ∈ a.

b⊥P ⇔
df

∧
a‖P

b⊥a.

Definition. Let P ⊆ R3 be a plane and a ∈ R3.

A normal direction of a plane P =
df

a direction of a vector a⊥P .

A normal vector of a plane P =
df

a vector a⊥P .

Definition. Let P,Q ⊆ R3 be planes and a, b ∈ R3. Then

P ‖ Q ⇔
df

a⊥P ∧ b⊥Q ∧ a ‖ b.

P⊥Q ⇔
df

a⊥P ∧ b⊥Q ∧ a⊥b.

Theorem. For every point a ∈ R3 and every nonzero vector a = [α1, α2, α3] there exists

in R3 a unique plane, which passes through a with a normal vector a. It is consisted of

all points (x1, x2, x3) satisfying the equation

α0 + α1x1 + α2x2 + α3x3 = 0, where α0 = −a · (a).

That is the linear equation of a plane P such that a ∈ P and a⊥P .

Proof. Similar to the proof of theorem on a linear equation of a line. �
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Theorem. Let P,Q ⊆ R3 be planes, P : α0 +α1x1 +α2x2 +α3x3 = 0 and Q : β0 +β1x1 +

β2x2 + β3x3 = 0. Then

P = Q ⇔
∨
t6=0

βi = tαi for i = 0, 1, 2, 3.

P ‖ Q ⇔
∨
t6=0

βi = tαi for i = 1, 2, 3.

Proof. Easy. �

Definition. Let P ⊆ R3 be a plane, L ⊆ R3 be a line and a ∈ R3. Then

ρ(a, P ) =
df

ρ(a, b), where b ∈ P ∩ L and a ∈ L⊥P

(a distance of a point a and a plane P in R3).

Theorem. Let P ⊆ R3 be a plane, P : α0 +α1x1 +α2x2 +α3x3 = 0 and a = (a1, a2, a3) ∈
R3. Then

ρ(a, P ) =
|α0 + α1a1 + α2a2 + α3a3|√

α2
1 + α2

2 + α2
3

.

Proof. Similar to the proof of appropriate theorem for a line. �

Definition. An equation α0 + α1x1 + α2x2 + α3x3 = 0 of a plane P in R3 is called

normalized if a = [α1, α2, α3] is a versor (so |a| = 1).

Conclusion. If α0 +α1x1 +α2x2 +α3x3 = 0 is a normalized equation of a plane P in R3

and a = (a1, a2, a3) ∈ R3, then

ρ(a, P ) = |α0 + α1a1 + α2a2 + α3a3| .

Theorem. Every plane in R3 has a normalized equation.

Proof. Easy. �

Theorem. Let P ⊆ R3 be a plane, a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) ∈ R3

and
−→
ab ∦ −→ac . Then

P :

∣∣∣∣∣∣∣∣∣
1 a1 a2 a3

1 b1 b2 b3

1 c1 c2 c3

1 x1 x2 x3

∣∣∣∣∣∣∣∣∣ = 0.

Proof. Analogous to that for a line in R2. �

Remark. Let P,Q ⊆ R3 be planes. Then

P ‖ Q ⇒ P = Q ∨ P ∩Q = ∅,

P ∦ Q ⇒ P ∩Q is a line.
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Definition.

A proper pencil of planes in R3 =
df

the set of all planes containing the same line.

An improper pencil of planes in R3 =
df

the set of all planes with the same normal

direction.

Remark. Every two different planes in R3 determine a pencil (proper or improper). We

use the following denotation:

P(P,Q) = a pencil of planes in R3 determined by planes P,Q.

Theorem. (On a pencil of planes in R3) Let P : α0 + α1x1 + α2x2 + α3x3 = 0,

Q : β0 + β1x1 + β2x2 + β3x3 = 0 and P 6= Q. Then

R ∈ P(P,Q)⇔
∨

η,λ∈R, η2+λ2>0

R : η(α0+α1x1+α2x2+α3x3)+λ(β0+β1x1+β2x2+β3x3) = 0.

Proof. Analogous to that for a pencil of lines in R2. �

Remark. Equivalently, we have

R ∈ P(P,Q)⇔
∨
λ∈R

R : α0 + α1x1 + α2x2 + α3x3 + λ(β0 + β1x1 + β2x2 + β3x3) = 0

(in this case there does not exist λ such that R = Q).

Remark. Let P,Q ⊆ R3 be planes and P ∦ Q. Then P ∩ Q = L is a line. If P :

α0 + α1x1 + α2x2 + α3x3 = 0, Q : β0 + β1x1 + β2x2 + β3x3 = 0, then

L :

{
α0 + α1x1 + α2x2 + α3x3 = 0,

β0 + β1x1 + β2x2 + β3x3 = 0.

It is an edge equation of a line L in R3. Then a = [α1, α2, α3]⊥L and b = [β1, β2, β3]⊥L.

Hence a× b ‖ L.

Definition. Let L ⊆ R3 be a line, P ⊆ R3 be a plane and a ∈ R3. Then

ρ(a, L) =
df

ρ(a, b), where b ∈ L ∩ P and a ∈ P⊥L

(a distance of a point a and a line L in R3).

Theorem. Let L ⊆ R3 be a line, a, a, b ∈ R3, a ‖ L, a 6= b and b ∈ L. Then

ρ(a, L) =

∣∣∣a× [−→ab]∣∣∣
|a|

.
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Proof. We have

Lr r
-

aa′ b

ρ(a, L)

ra
S
S
S
S
S
S
Sw

Hence sin
(
^
(
a,
[−→
ab
]))

= ρ(a,a′)
ρ(a,b)

and

ρ(a, L) = ρ(a, a′) = ρ(a, b) sin
(
^
(
a,
[−→
ab
]))

=
|a|
∣∣∣[−→ab]∣∣∣ sin(^(a, [−→ab]))

|a|

=

∣∣∣a× [−→ab]∣∣∣
|a|

. �

Definition. Let k < n.

A k-dimensional hyperplane in Rn =
df

a subspace of the space Rn isometric with Rk.

Definition. Let a, b, a, b ∈ Rn, Hn−1 be an (n− 1)-dimensional hyperplane in Rn. Then

a ‖ Hn−1 ⇔
df

∨
−→
ab

−→
ab ∈ a ∧ a, b ∈ Hn−1 ⇔

∨
a,b∈Hn−1

−→
ab ∈ a.

b⊥Hn−1 ⇔
df

∧
a‖Hn−1

b⊥a.

Theorem. For every point a ∈ Rn and every nonzero vector a = [α1, . . . , αn] there exists

in Rn a unique hyperplane Hn−1 such that a ∈ Hn−1 and a⊥Hn−1. It is consisted of all

points (x1, . . . , xn) satisfying the equation

α0 + α1x1 + . . .+ αnxn = 0, where α0 = −a · (a).

That is the linear equation of a hyperplane Hn−1 such that a ∈ Hn−1 and a⊥Hn−1.

Proof. Similar to the proof of theorem on a linear equation of a line. �
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5. Transformations of space Rn

Let f : Rn → Rn be an isometry, that is, f is onto and∧
x,y∈Rn

ρ(f(x), f(y)) = ρ(x, y).

Definition.

An invariant of isometry =
df

a property which is unchanged by isometries.

Theorem. A centre of a segment is an invariant of isometry (that is, if c is a centre of a

segment 〈a, b〉, then f(c) is a centre of a segment 〈f(a), f(b)〉).

Proof. Take an isometry f : Rn → Rn and let a, b, c ∈ Rn. If c is a centre of a segment

〈a, b〉, then

ρ(a, c) = ρ(b, c) =
1

2
ρ(a, b).

Hence

ρ(f(a), f(c)) = ρ(f(b), f(c)) =
1

2
ρ(f(a), f(b)),

that is, f(c) is a centre of a segment 〈f(a), f(b)〉. �

Theorem. An equality of localized vectors is an invariant of isometry.

Proof. Follows from definition of equal vectors and previous theorem. �

Conclusion. Let f : Rn → Rn be an isometry and a, a, b ∈ Rn. Then

a =
[−→
ab
]
⇒ f(a) =

[
−→

f(a)f(b)

]
.

Theorem. Let f : Rn → Rn be an isometry and a, b ∈ Rn. Then

1) f(0) = 0 (for vectors!),

2) f(a + b) = f(a) + f(b),

3) f(−a) = −f(a),

4) f(a− b) = f(a)− f(b),

5) |f(a)| = |a|.

Proof. 1) Obvious.

2) Let a, b, a, b, c ∈ Rn. Then
−→
ab ∈ a and

−→
bc ∈ b from theorem on localization of a

free vector at a point. Thus
−→
ab +

−→
bc =

−→
ac ∈ a + b. Hence

−→
f(a)f(c) ∈ f(a + b) and

−→
f(a)f(c) =

−→
f(a)f(b) +

−→
f(b)f(c) ∈ f(a) + f(b). Thus f(a + b) = f(a) + f(b).

3) We have

0 = f(0) = f(a + (−a)) = f(a) + f(−a).
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Hence f(−a) = −f(a).

4) We easily get

f(a− b) = f(a + (−b)) = f(a) + f(−b) = f(a)− f(b).

5) Take a, b ∈ Rn such that
−→
ab ∈ a. We have

|f(a)| =
∣∣∣∣[ −→
f(a)f(b)

]∣∣∣∣ = ρ(f(a), f(b)) = ρ(a, b) =
∣∣∣[−→ab]∣∣∣ = |a| . �

Conclusion. The zero vector, an opposite vector, a sum and a difference of vectors and

a length of a vector are invariants of isometry.

Theorem. Parallelism, equally parallelism and oppositely parallelism of vectors are in-

variants of isometry.

Proof. Follows from definition of parallelism and previous theorem. �

Conclusion. A direction and a sense of a vector are invariants of isometry, that is, for

a ∈ Rn,

f(K(a)) = K(f(a)) and

f(Z(a)) = Z(f(a)).

Theorem. Let f : Rn → Rn be an isometry, a ∈ Rn and t ∈ R. Then

f(ta) = tf(a).

Proof. Assume t ≥ 0. Then ta �� a, whence f(ta) �� f(a) and tf(a) �� f(a). Thus

f(ta) �� tf(a).

Moreover,

|f(ta)| = |ta| = t |a| = t |f(a)| .

Hence f(ta) = tf(a).

Similarly for t < 0 (in that case parallelism is opposite). �

Conclusion. A linear combination of vectors is an invariant of isometry, that is,

f

(
k∑
i=1

tiai

)
=

k∑
i=1

tif(ai),

where a1, . . . , ak ∈ Rn and t1, . . . , tk ∈ R.

Theorem. A scalar product of vectors is an invariant of isometry, that is,

f(a) · f(b) = a · b.
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Proof. Take an isometry f : Rn → Rn and let a, b ∈ Rn. We have

(f(a)+f(b))2 = (f(a+b))2 = |f(a + b)|2 = |a + b|2 = (a+b)2 = a2+2a·b+b2 = |a|2+2a·b+|b|2

and

(f(a)+f(b))2 = (f(a))2+2f(a)·f(b)+(f(b))2 = |f(a)|2+2f(a)·f(b)+|f(b)|2 = |a|2+2f(a)·f(b)+|b|2 .

Hence |a|2 + 2a · b + |b|2 = |a|2 + 2f(a) · f(b) + |b|2. Thus

f(a) · f(b) = a · b. �

Conclusion. A perpendicularity of vectors is an invariant of isometry.

Conclusion. A cosine of an angle between vectors and a measure of an angle between

vectors are invariants of isometry.

Theorem. A k-dimensional hyperplane in Rn (k < n) is an invariant of isometry, that

is, if Hk is a k-dimensional hyperplane, then f(Hk) is a k-dimensional hyperplane.

Proof. Follows from definition of a k-dimensional hyperplane and the fact that a com-

position of isometries is an isometry. �

Conclusion. A line and a plane in Rn are invariants of isometry.

Conclusion. A pencil of lines in R2 and a pencil of planes in R3 are invariants of isometry.

Theorem. Parallelism and perpendicularity of lines in Rn and parallelism and perpen-

dicularity of planes in R3 are invariants of isometry.

Proof. Follows from the fact that parallelism and perpendicularity of vectors are invari-

ants of isometry. �

Remark. Let us set:

δij =

{
0 if i 6= j,

1 if i = j.

Theorem. (On an analytic form of an isometry) Every isometry f : Rn → Rn is a

transformation given by a formula

f(x) = a+
n∑
i=1

xi · (ai), where ai · aj = δij.

Then f(0) = a and ai = f(ei), where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.

Proof. First, note that e1 = [1, 0, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], . . . , en = [0, 0, 0, . . . , 1].

From properties of an isometry we know that an isometry is a linear transformation.

Hence every isometry f : Rn → Rn is uniquely determined by its values f(e1), . . . , f(en)

in end-points of vectors e1, . . . , en.
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Now, if x = (x1, . . . , xn) ∈ Rn, then x = 0 + x1e1 + . . . + xnen, whence f(x) = f(0) +

x1f(e1) + . . . + xnf(en). Setting f(0) = a and f(ei) = ai, i = 1, . . . , n we get ai · aj = δij
and

f(x) = a+
n∑
i=1

xi · (ai). �

Let f : Rn → Rn be a similarity with the ratio λ > 0, that is, f is onto and∧
x,y∈Rn

ρ(f(x), f(y)) = λρ(x, y).

Definition.

A similarity invariant =
df

a property which is unchanged by similarities.

Remark. Every similarity invariant is an invariant of isometry (since an isometry is a

similarity with the ratio 1). An invariant of isometry is a similarity invariant iff it does

not depend on a distance of points in Rn. Thus we have:

Theorem. Similarity invariants are: a centre of a segment, an equality of localized

vectors, the zero vector, an opposite vector, a sum and a difference of vectors, a parallelism,

an equally parallelism and an oppositely parallelism of vectors, a direction and a sense of

a vector, a linear combination of vectors, a k-dimensional hyperplane in Rn, a line in Rn,

a plane in Rn, a parallelism and a perpendicularity of lines in Rn and a parallelism and a

perpendicularity of planes in R3, a pencil of lines in R2 and a pencil of planes in R3.

Conclusion. Let f : Rn → Rn be a similarity and a, a, b ∈ Rn. Then

a =
[−→
ab
]
⇒ f(a) =

[
−→

f(a)f(b)

]
.

Theorem. Let f : Rn → Rn be a similarity with the ratio λ > 0 and a, b ∈ Rn. Then

1) |f(a)| = λ |a|,
2) f(a) · f(b) = λ2(a · b).

Proof. 1) Let a, b ∈ Rn be such that
−→
ab ∈ a. We have

|f(a)| =
∣∣∣∣[ −→
f(a)f(b)

]∣∣∣∣ = ρ(f(a), f(b)) = λρ(a, b) = λ
∣∣∣[−→ab]∣∣∣ = λ |a| .

2) We know that f(a) + f(b) = f(a + b). Hence

(f(a)+f(b))2 = (f(a+b))2 = |f(a + b)|2 = λ2 |a + b|2 = λ2(a+b)2 = λ2 |a|2+2λ2a·b+λ2 |b|2
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and

(f(a) + f(b))2 = (f(a))2 + 2f(a) · f(b) + (f(b))2

= |f(a)|2 + 2f(a) · f(b) + |f(b)|2

= λ2 |a|2 + 2f(a) · f(b) + λ2 |b|2 .

Thus

f(a) · f(b) = λ2a · b. �

Conclusion. A length of a vector and a scalar product of vectors are not similarity

invariants.

Theorem. A cosine of an angle between vectors is a similarity invariant.

Proof. Let f : Rn → Rn be a similarity with the ratio λ > 0 and a, b ∈ Rn. By previous

theorem we have

f(a) · f(b) = |f(a)| |f(b)| cos(^(f(a), f(b))) = λ2 |a| |b| cos(^(f(a), f(b)))

and

λ2(a · b) = λ2 |a| |b| cos(^(a, b)),

that is,

cos(^(f(a), f(b))) = cos(^(a, b)). �

Conclusion. A measure of an angle between vectors, in particular, a perpendicularity of

vectors are similarity invariants.

Theorem. (On an analytic form of a similarity) Every similarity f : Rn → Rn with

the ratio λ > 0 is a transformation given by a formula

f(x) = a+
n∑
i=1

xi · (ai), where ai · aj = λ2δij.

Then f(0) = a and ai = f(ei), where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.

Proof. We have that g : Rn → Rn such that g(x) = 1
λ
f(x), where x ∈ Rn, is an isometry,

because

ρ(g(x), g(y))2 = [g(y)− g(x)]2 =
1

λ2
[f(y)− f(x)]2 =

1

λ2
ρ(f(x), f(y))2 = ρ(x, y)2,

that is, ρ(g(x), g(y)) = ρ(x, y), where x, y ∈ Rn.

By theorem on an analytic form of an isometry

g(x) = b+
n∑
i=1

xi · (bi),
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where bi · bj = δij, g(0) = b, bi = g(ei) and ei = [δi1, δ
i
2, . . . , δ

i
n]. Hence

f(x) = λg(x) = λb+
n∑
i=1

xi · (λbi).

Setting a = λb and ai = λbi, i = 1, . . . , n we get

f(x) = a+
n∑
i=1

xi · (ai)

and

ai · aj = (λbi) · (λbj) = λ2(bi · bj) = λ2δij,

f(0) = λg(0) = λb = a,

ai = λbi = λg(ei) = f(ei),

where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n. �

Definition. Let f : Rn → Rn be a transformation. Then

f is an affine transformation ⇔
df

1) f : Rn onto−→
1−1

Rn,

2)
∧

a,b,a′,b′∈Rn

−→
ab =

−→
a′b′ ⇒

−→
f(a)f(b) =

−→
f(a′)f(b′),

3)
∧

a1,a2∈Rn

∧
t1,t2∈R

f(t1a1 + t2a2) = t1f(a1) + t2f(a2).

Conclusion. Let f : Rn → Rn be an affine transformation and a, a, b ∈ Rn. Then

a =
[−→
ab
]
⇒ f(a) =

[
−→

f(a)f(b)

]
.

Conclusion. Every isometry and every similarity are affine transformations.

Definition. Let a1, . . . , ak ∈ Rn and t1, . . . , tk ∈ R.

Vectors a1, . . . , ak are linearly independent ⇔
df

k∑
i=1

tiai = 0 ⇒ t1 = t2 = . . . = tk = 0.

Theorem. (On an analytic form of an affine transformation) Every affine trans-

formation f : Rn → Rn is given by a formula

f(x) = a+
n∑
i=1

xi · (ai),

where vectors a1, . . . , an are linearly independent. Then f(0) = a and ai = f(ei), where

ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.
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Proof. For x = (x1, . . . , xn) ∈ Rn we have x = 0 + x1 · (e1) + . . .+ xn · (en). By definition

of an affine transformation

f(x) = f(0) + x1 · f(e1) + . . .+ xn · f(en).

Let us set: f(0) = a and f(ei) = ai, i = 1, . . . , n. Then

f(x) = a+
n∑
i=1

xi · (ai)

and from the fact that f is one-to-one:

f(x) = f(0) ⇒ x = 0,

that is, a+
n∑
i=1

xi · (ai) = a ⇒ x1 = . . . = xn = 0,

so,
n∑
i=1

xi · (ai) = 0 ⇒ x1 = . . . = xn = 0.

Hence vectors a1, . . . , an are linearly independent. �

Theorem. Composition of two affine transformations is an affine transformation.

Proof. Easy. �

Theorem. If f : Rn → Rn is an affine transformation, then f−1 : Rn → Rn is an affine

transformation.

Proof. Easy. �

Definition.

An affine invariant =
df

a property which is unchanged by affine transformations.

Conclusion. Affine invariants are: an equality of localized vectors, a linear combination

of vectors and a parallelism of vectors.

Theorem. Let f : Rn → Rn be an affine transformation, a, b ∈ Rn and t ∈ R. Then

f((1− t)a+ tb) = (1− t)f(a) + tf(b).

Proof. Easy. It suffices to use an analytic form of an affine transformation. �

Conclusion. A centre of a segment is an affine invariant.

Conclusion. A line in Rn is an affine invariant.

Conclusion. A plane in Rn and a k-dimensional hyperplane in Rn are affine invariants

(because they are unions of lines).

Conclusion. A parallelism of lines in Rn and a parallelism of planes in R3 are affine

invariants.
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Remark. Every affine invariant is a similarity invariant (which means that if a property

is not a similarity invariant, then it is not an affine invariant).

Conclusion. A length of a vector and a scalar product of vectors are not affine invariants.

Conclusion. A cosine of an angle between vectors, a measure of an angle between vectors,

in particular, a perpendicularity of vectors are not affine invariants.

Conclusion. Every affine invariant is a similarity invariant and every similarity invariant

is an invariant of isometry.

Now we will give some characterizations of an isometry, a similarity and an affine

transformation. First we need a notion of an orthogonal matrix.

Definition. Let A be a real square matrix of order n.

A matrix A is called orthogonal ⇔
df

columns of A are versors in Rn perpendicular to

each other.

Theorem. Let A be a real square matrix. The following are equivalent:

1) A is orthogonal,

2) ATA = I,

3) A−1 = AT .

Proof. Easy. �

Conclusion. Let A,B be orthogonal matrices of order n. Then

1) det(A) = ±1,

2) AT is orthogonal,

3) rows of A are versors in Rn perpendicular to each other,

4) A−1 is orthogonal,

5) AB is orthogonal.

Definition. Let f : Rn → Rn be an isometry (a similarity, an affine transformation), a =

(a01, . . . , a0n), ai = [αi1, . . . , αin] ∈ Rn for i = 1, . . . , n, and let (x1, . . . , xn), (x1, . . . , xn) ∈
Rn. Then

f(x) = a+
n∑
i=1

xi · (ai),

that is,

f(x1, . . . , xn) = (x1, . . . , xn) = (a01, . . . , a0n) + x1(α11, . . . , α1n) + . . .+ xn(αn1, . . . , αnn),
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so 
x1 = a01 + α11x1 + . . .+ αn1xn,

x2 = a02 + α12x1 + . . .+ αn2xn,
...

xn = a0n + α1nx1 + . . .+ αnnxn.

A matrix

Af =
df


α11 . . . αn1

α12 . . . αn2
...

. . .
...

α1n . . . αnn


is called the matrix of an isometry (a similarity, an affine transformation) f .

Theorem. A transformation f : Rn → Rn given by the above analytic formula is:

1) an affine transformation ⇔ Af is nonsingular,

2) a similarity with the ratio λ > 0 ⇔ 1
λ
Af is orthogonal,

3) an isometry ⇔ Af is orthogonal.

Proof. Follows from theorems on an analytic forms of these transformations. �
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6. Algebraic sets in space Rn

Definition. Let ϕ : Rn → R be a function, x = (x1, . . . , xn) ∈ Rn, i1, . . . , in ∈ {0, . . . , k}
and k ∈ N ∪ {0}. Then

ϕ is a monomial in n variables ⇔
df

ϕ(x) = αi1...inx
i1
1 . . . x

in
n .

A degree of a monomial ϕ =
df
i1 + . . .+ in.

ϕ is a polynomial in n variables ⇔
df

ϕ is a sum of monomials.

A degree of a polynomial ϕ =
df

the greatest of degrees of monomials occuring in a

polynomial ϕ.

Example.

1. ϕ(x) = 2x21x
3
2 is the monomial of degree 5 in 2 variables.

2. ϕ(x) = x21x2 + 2x22x
2
3 − 3x1x3 + 5x1 − 4 is the polynomial of degree 4 in 3 variables.

Definition. Let ϕ : Rn → R be a polynomial of degree k. An equation ϕ(x) = 0 is called

the algebraic equation of degree k.

Definition. (An algebraic set in Rn) Let ϕ : Rn → R be a polynomial and ϕ(x) = 0

be an algebraic equation.

An algebraic set =
df

a set of solutions of an algebraic equation,

that is, if F ⊆ Rn, then

F is an algebraic set ⇔
df

[there is a polynomial ϕ : Rn → R such that x ∈ F ⇔ ϕ(x) =

0].

We will write F : ϕ(x) = 0.

A degree of a set F =
df

the least of degrees of algebraic equations describing a set F .

We denote it by deg(F ).

Remarks.

1. Algebraic sets of degree 0 in Rn: ∅ and Rn (since if a polynomial ϕ is of degree 0, then

an equation ϕ(x) = 0 is either contradictory or it is an identity).

2. Algebraic sets of degree 1 in Rn: (n − 1)-dimensional hyperplanes (if Hn−1 : α0 +

α1x1 + . . . + αnxn = 0, then ϕ(x1, . . . , xn) = α0 + α1x1 + . . . + αnxn = 0 is an algebraic

equation of degree 1).

3. Algebraic sets of degree 2 in R1: 2-point sets (since a polynomial of degree 2 in one

variable has at most 2 roots).
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4. Algebraic sets of degree k in R1: k-point sets (since a polynomial of degree k in one

variable has at most k roots).

Conclusion. A line in R2 and a plane in R3 are algebraic sets of degree 1.

Theorem. (On position of a line under an algebraic set of degree k)

Let L, F ⊆ Rn, L be a line and F be an algebraic set of degree k. Then

L ⊆ F ∨ L ∩ F ≤ k.

Proof. Let F : ϕ(x) = 0, where ϕ is a polynomial of degree k. By theorem on a line:

L : x(t) = (1− t)a+ tb, where t ∈ R and a, b ∈ L, that is, L : (x1, . . . , xn) = a+ (b− a)t,

where t ∈ R and a, b ∈ L. We search all t ∈ R satisfying the following system of equations{
(x1, . . . , xn) = a+ (b− a)t,

ϕ(x1, . . . , xn) = 0.

It is not difficult to see that there are no such t or all t ∈ R satisfy that system or at most

k numbers t satisfy that system. Hence

L ∩ F = ∅ ∨ L ∩ F = L ∨ L ∩ F ≤ {t1, . . . , tk}.

Thus

L ⊆ F ∨ L ∩ F ≤ k. �

Definition.

A transcendental set =
df

a subset of Rn which is not an algebraic set of any degree.

Conclusion. If for a set F ⊆ Rn there exists a line L such that L∩F is a proper infinite

subset of L, then the set F is transcendental.

Example. The sinusoid is a transcendental set.

Theorem. An algebraic set and its degree are affine invariants.

Proof. Let F : ϕ(x) = 0 be an algebraic set of degree k and f : Rn → Rn be

an affine transformation. Then we know that f−1 is also an affine transformation. If

f(x1, . . . , xn) = (x1, . . . , xn), then f−1(x1, . . . , xn) = (x1, . . . , xn). From an analytic form

of an affine transformation f−1 we have formulas for x1, . . . , xn. We set them to the equa-

tion ϕ(x1, . . . , xn) = 0 and obtain an algebraic equation of degree k of an algebraic set F ,

that is, f(F ) = F . �

Conclusion. An algebraic set and its degree are similarity invariants and also invariants

of isometry.

Conclusion. A transcendental set is an affine invariant (so also a similarity invariant

and an invariant of isometry).
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Definition. Let a, a′ ∈ Rn and H ⊆ Rn be a hyperplane. Then

a, a′ are symmetric with respect to H ⇔
df

c =
a+ a′

2
∈ H ∧

[−→
aa′
]
⊥H.

Definition. Let F,H ⊆ Rn, F be an algebraic set and H be a hyperplane. Then

H is a hyperplane of symmetry of F ⇔
df

[a ∈ F ⇒ a′ ∈ F, where a′ is symmetric to a with respect to H].

Remarks.

1. A 0-dimensional hyperplane of symmetry reduces to a point, called a centre of symmetry

of a set F .

2. A 1-dimensional hyperplane of symmetry is a line, called an axis of symmetry of a set

F .

Theorem. A centre of symmetry of an algebraic set is an affine invariant.

Proof. Follows directly from definition. �

Remark. An axis of symmetry of an algebraic set is not an affine invariant.

Algebraic sets of degree 2 in R2:

1. A 1-point set.

Let a = (a1, a2), x = (x1, x2) ∈ R2. Then

{a} : (x1 − a1)2 + (x2 − a2)2 = 0

and ϕ(x) = (x1 − a1)2 + (x2 − a2)2 is a polynomial of degree 2, that is, deg({a}) = 2.

2. A union of two different lines.

Let L,K ⊆ R2 be two lines and let x = (x1, x2) ∈ R2. Take

L : α0 + α1x1 + α2x2 = 0, K : β0 + β1x1 + β2x2 = 0.

Then

x ∈ L ∪K ⇔ α0 + α1x1 + α2x2 = 0 ∨ β0 + β1x1 + β2x2 = 0

⇔ (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) = 0.

So

L ∪K : (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) = 0
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and ϕ(x) = (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) is a polynomial of degree 2, that is,

deg(L ∪K) = 2.

3. A circle.

Let a = (a1, a2) ∈ R2, r > 0 and x = (x1, x2) ∈ R2. A circle is defined in the following

way:

S = S(a, r) =
df
{x ∈ R2 : ρ(x, a) = r}.

Then a is called a centre of S and r is called a radius of S. Hence

x ∈ S ⇔ ρ(x, a) = r ⇔ [ρ(x, a)]2 = r2

⇔ (x1 − a1)2 + (x2 − a2)2 = r2.

So

S : (x1 − a1)2 + (x2 − a2)2 − r2 = 0

and ϕ(x) = (x1 − a1)2 + (x2 − a2)2 − r2 is a polynomial of degree 2, that is, deg(S) = 2.

4. A conic.

Definition. (Conic)

Let a ∈ R2, K ⊆ R2 be a line, a /∈ K and e > 0. The set

S(a,K, e) =
df
{x ∈ R2 : ρ(x, a) = e · ρ(x,K)}

is called the conic. Then, a is called a focus of S(a,K, e), K is called a directrix of

S(a,K, e) and e is called an eccentric of S(a,K, e).

Let us take such a coordinate system that the x1-axis passes through the focus a and

it is perpendicular to the directrix K, that is, a = (u, 0), K : x1 − v = 0 and |u− v| = d:

-

6

o

K

v

r x = (x1, x2)
ρ(x,K)

�
�
�
�
�
�
��ra
u

ρ(x, a)

x1

x2
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Then

ρ(x, a) = e · ρ(x,K) ⇔ [ρ(x, a)]2 = e2 · [ρ(x,K)]2,

that is,

(x1 − u)2 + x22 = e2(x1 − v)2.

Hence

S(a,K, e) : (1− e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) = 0

and ϕ(x) = (1− e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) is a polynomial of degree 2, that

is, deg(S(a,K, e)) = 2.

Theorem. A conic, its focus, directrix and eccentric are invariants of isometry.

Proof. Let f : R2 → R2 be an isometry. We have a conic:

S(a,K, e) = {x ∈ R2 : ρ(x, a) = e · ρ(x,K)},

where a is its focus, K is its directrix and e is its eccentric. Then f(K) is a line and

ρ(f(x), f(a)) = ρ(x, a) = e · ρ(x,K) = e · ρ(f(x), f(K)).

Hence

f(S(a,K, e)) = S(f(a), f(K), e) = {y = f(x) ∈ R2 : ρ(y, f(a)) = e · ρ(y, f(K))}

is a conic which has a focus f(a), a directrix f(K) and an eccentric e. �

Exercise. Show that a conic, its focus, directrix and eccentric are similarity invariants.

Definition.

A conic S(a,K, e) is : 1) an ellipse if e < 1,

2) a parabola if e = 1,

3) a hyperbola if e > 1.

We know that a = (u, 0), K : x1 − v = 0, |u− v| = d and

S(a,K, e) : (1− e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) = 0.

Parabola P :

Take e = 1 and let u = 1
2
d and v = −1

2
d. Then

P : x22 + 2(v − u)x1 + (u2 − v2) = 0,
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that is,

P : x22 − 2dx1 = 0.

That is the canonical equation of a parabola.

It is easy to see that a parabola has one axis of symmetry: in canonical position the

x1-axis; does not have centres of symmetry; has a vertex, so a point of intersection of a

parabola and its axis of symmetry: in canonical position point (0, 0); has one focus: in

canonical position a = (d
2
, 0) and has one directrix: in canonical position K : x1 + d

2
= 0.

-

6

x1

x2
K

r
a

r
�

�
�
�=

a vertex of a parabola

P

Ellipse E:

Take e < 1 and let v − u = d and u− e2v = 0. Hence

u =
e2d

1− e2
, v =

d

1− e2
and u, v > 0.

Then

u2 − e2v2 =
(e2d)2

(1− e2)2
− e2d2

(1− e2)2
= −ud.

Thus

E :
(1− e2)x21

ud
+
x22
ud

= 1.

Set: α1 =
√

ud
1−e2 and α2 =

√
ud, where

α1 =
ed

1− e2
> 0, α2 =

ed√
1− e2

= α1

√
1− e2 < α1.
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Then

E :
x21
α2
1

+
x22
α2
2

= 1.

That is the canonical equation of an ellipse.

It is easy to see that an ellipse has two axes of symmetry: in canonical position the

coordinate axes; has one centre of symmetry: in canonical position point (0, 0); has two

foci: in canonical position a = (
√
α2
1 − α2

2, 0) and a′ = (−
√
α2
1 − α2

2, 0) and has two

directrices: in canonical position K : x1 − α2
1√

α2
1−α2

2

= 0 and K ′ : x1 +
α2
1√

α2
1−α2

2

= 0.

Moreover the eccentric e =

√
α2
1−α2

2

α1
.

-

6

x1

x2
KK ′

r
a

r
a′ α1

α2E
��������)

a minor axis of an ellipse

Q
Q
Q

Q
QQk

a major axis of an ellipse

Remark. A circle is an ellipse (with α1 = α2).

Hyperbola H:

Take e > 1 and let v − u = d and u− e2v = 0. Hence

u =
e2d

1− e2
, v =

d

1− e2
and u, v < 0.

Then

u2 − e2v2 = −ud.

Thus

H :
(1− e2)x21

ud
+
x22
ud

= 1.

Setting α1 =
√

ud
1−e2 and α2 =

√
−ud, where

α1 =
ed

e2 − 1
< −u, α2 =

ed√
e2 − 1

= α1

√
e2 − 1 > α1,
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we get

H :
x21
α2
1

− x22
α2
2

= 1.

That is the canonical equation of a hyperbola.

It is easy to see that a hyperbola has two axes of symmetry: in canonical position the

coordinate axes; has one centre of symmetry: in canonical position point (0, 0); has two

foci: in canonical position a = (
√
α2
1 + α2

2, 0) and a′ = (−
√
α2
1 + α2

2, 0) and has two

directrices: in canonical position K : x1 − α2
1√

α2
1+α

2
2

= 0 and K ′ : x1 +
α2
1√

α2
1+α

2
2

= 0.

Moreover the eccentric e =

√
α2
1+α

2
2

α1
.

-

6

x1

x2
KK ′

r
a

r
a′

rr
�����������)

�
�

��=

vertices of a hyperbola

HH

Definition. Let F, F ′ ⊆ Rn be algebraic sets of degree k. Then

F, F ′ are isometric ⇔
df

there is an isometry f : Rn → Rn such that f(F ) = F ′.

F, F ′ are similar ⇔
df

there is a similarity f : Rn → Rn such that f(F ) = F ′.

F, F ′ are identical from the affine point of view ⇔
df

there is an affine transformation

f : Rn → Rn such that f(F ) = F ′.

Remark. Isometric sets are similar, and similar sets are identical from the affine point

of view.

Theorem. All parabolas are similar.

Proof. Take a similarity f : R2 → R2 such that

f(x) = λx, where λ > 0,

that is,

(x1, x2) = f(x1, x2) = (λx1, λx2).
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Take a parabola P : x22 − 2dx1 = 0. Then

(λx2)
2 − 2λd · (λx1) = 0.

Hence P ′ : x22 − 2λdx1 = 0 and λd = d′ ⇒ λ = d′

d
.

Thus the similarity f transforms the parabola P onto the parabola P ′. �

Theorem. All ellipses are identical from the affine point of view.

Proof. Take an affine transformation f : R2 → R2 such that

(x1, x2) = f(x1, x2) = (x1,
√

1− e2 x2), 0 < e < 1.

It is seen that f transforms the circle S(0, α1) : x21+x22 = α2
1 onto the ellipse E : x21+

x22
1−e2 =

α2
1, that is, onto the ellipse E :

x21
α2
1

+
x22
α2
2

= 1 (since α2 = α1

√
1− e2). Hence every ellipse is

an affine image of the circle. Thus all ellipses are identical from the affine point of view. �

Theorem. All hyperbolas are identical from the affine point of view.

Proof. Take an affine transformation f : R2 → R2 such that

(x1, x2) = f(x1, x2) = (α1x1, α2x2).

It is seen that f transforms the hyperbola H0 : x21 − x22 = 1 onto the hyperbola H :
x21
α2
1
− x22

α2
2

= 1. Hence every hyperbola is an affine image of the hyperbola H0. Thus all

hyperbolas are the same from the affine point of view. �

Finally we give a classification of algebraic sets of degree 2 in R2. Let us take a general

equation of an algebraic set of degree 2 in R2:

α11x
2
1 + 2α12x1x2 + α22x

2
2 + 2α13x1 + 2α23x2 + α33 = 0,

where α2
11 + α2

12 + α2
22 > 0.

Set:

A =

[
α11 α12

α21 α22

]
, where α21 = α12

and

Ã =

 α11 α12 α13

α21 α22 α23

α31 α32 α33

 , where α21 = α12, α31 = α13, α32 = α23.

Let det(A) = ∆, det
(
Ã
)

= ∆̃, r(A) = k and r
(
Ã
)

= l. Obviously, 0 ≤ k ≤ l. Moreover,

let

A11 =

∣∣∣∣∣ α22 α23

α32 α33

∣∣∣∣∣ and A22 =

∣∣∣∣∣ α11 α13

α31 α33

∣∣∣∣∣ .
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Classification of algebraic sets of degree 2 in R2:

[k, l]

[2, 3]

∆ > 0, α11∆̃ < 0
x21
α2
1

+
x22
α2
2

= 1 ellipse

∆ > 0, α11∆̃ > 0
x21
α2
1

+
x22
α2
2

= −1 empty set

∆ < 0
x21
α2
1
− x22

α2
2

= 1 hyperbola

[2, 2]

∆ < 0
x21
α2
1
− x22

α2
2

= 0 pair of intersecting lines

∆ > 0
x21
α2
1

+
x22
α2
2

= 0 point

[1, 3] ∆ = 0, ∆̃ 6= 0 x22 − 2dx1 = 0 parabola

[1, 2]

A22 < 0 or A11 < 0 x22 − α2
2 = 0 pair of parallel lines

A22 > 0, A11 > 0 x22 + α2
2 = 0 empty set

[1, 1] x22 = 0 (double) line
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